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Abstract

Recent models in distributional seman-
tics consider derivational patterns (e.g.,
use → use + f ul ) as the result of a
compositional process, where base term
and affix are combined. We exploit
such models for German particle verbs
(PVs), and focus on the task of learning
a mapping function between base verbs
and particle verbs. Our models apply
particle-verb motivated training-space
restrictions relying on nearest neighbors,
as well as recent advances from zero-
shot-learning. The models improve the
mapping between base terms and de-
rived terms for a new PV derivation
dataset, and also across existing deriva-
tion datasets for German and English.

1 Introduction

Lazaridou et al. (2013) were the first to apply
distributional semantic models (DSMs) to the
task of deriving the meaning of morphologically
complex words from their parts. They relied
on high-dimensional vector representations to
model the derived term (e.g., useful) as a result
of a compositional process that combines the
meanings of the base term (e.g., to use) and the
affix (e.g., ful). For evaluation, they compared
the predicted vector of the complex word with
the original, corpus-based vector.

More recently, Kisselew et al. (2015) put the
task of modeling derivation into the perspective
of zero-shot-learning: instead of using cosine
similarities they predicted the derived term by
learning a mapping function between the base
term and the derived term. Once the predicted

vector was computed, a nearest neighbor search
was applied to validate if the prediction cor-
responded to the derived term. In zero-shot-
learning the task is to predict novel values, i.e.,
values that were never seen in training. More
formally, zero-shot-learning trains a classifier f :
X → Y that predicts novel values for Y (Palatucci
et al., 2009). It is often applied across vector
spaces, such as different domains (Mikolov et al.,
2013; Lazaridou et al., 2015).

The experiments by Kisselew et al. (2015)
were performed over six derivational patterns
for German (cf. Table 1), including particle
verbs (PVs) with two different particle prefixes
(an and durch), which were particularly difficult
to predict. PVs such as anfangen (to start) are
compositions of a base verb (BV) such as fan-
gen (to catch) and a verb particle such as an.
Predicting PV meaning is challenging because
German PVs are highly productive (Springorum
et al., 2013b; Springorum et al., 2013a), and
the particles are notoriously ambiguous (Lech-
ler and Roßdeutscher, 2009; Haselbach, 2011;
Kliche, 2011; Springorum, 2011). Furthermore,
the particles often trigger meaning shifts when
they combine with base verbs (Springorum et al.,
2013b), so the resulting PVs represent frequent
cases of non-literal meaning.

In this paper, we focus on predicting the
meanings of German PV derivations. Our mod-
els provide two contributions to the research
field of predicting derivations: (i) We suggest
a novel idea of restricting the available train-
ing data, which has a positive impact on the
mapping quality. (ii) We integrate a correc-
tion method for popular nearest neighbors into
our models, so-called hubs (Radovanović et al.,
2010), to improve the prediction quality.
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POS Affix Example Inst.

adj/adj un- sagbar - unsagbar 80
adj/adj anti- religiös - antireligiös 80
noun/noun -in Bäcker - Bäckerin 80
noun/noun -chen Schiff - Schiffchen 80
verb/verb an- backen - anbacken 80
verb/verb durch- sehen - durchsehen 80

Table 1: German dataset (Kisselew et al., 2015).

POS Affix Example Inst.

verb/verb auf- nehmen - aufnehmen 171
verb/verb ab- setzen - absetzen 287
verb/verb mit- streiken - mitstreiken 216
verb/verb ein- laufen - einlaufen 185
verb/verb zu- drücken - zudrücken 50
verb/verb an- legen - anlegen 221
verb/verb aus- malen - ausmalen 280

Table 2: New German PV derivation dataset.

2 Prediction Experiments

As in Kisselew et al. (2015), we treat every deriva-
tion type as a specific learning problem: we take
a set of word pairs with a particular derivation
pattern (e.g., “-in”, Bäcker::Bäckerin), and divide
this set into training and test pairs by perform-
ing 10-fold cross-validation. For the test pairs,
we predict the vectors of the derived terms (e.g.,−−−−−−→
Bäckerin). The search space includes all cor-
pus words across parts-of-speech, except for the
base term. The performance is measured in
terms of recall-out-of-5 (McCarthy and Navigli,
2009), counting how often the correct derived
term is found among the five nearest neighbors
of the predicted vector.

2.1 Derivation Datasets

We created a new collection of German parti-
cle verb derivations1 relying on the same re-
source as Kisselew et al. (2015), the semi-
automatic derivational lexicon for German DE-
rivBase (Zeller et al., 2013). From DErivBase,
we induced all pairs of base verbs and parti-
cle verbs across seven different particles. Non-
existing verbs were manually filtered out. In to-
tal, our collection contains 1410 BV–PV combi-
nations across seven particles, cf. Table 2.

In addition, we apply our models to two ex-
isting collections for derivational patterns, the
German dataset from Kisselew et al. (2015),
comprising six derivational patterns with 80 in-

1The dataset is available from http://www.ims.
uni-stuttgart.de/data/pv-deriv-dataset/.

stances each (cf. Table 1), and the English
dataset from Lazaridou et al. (2013), comprising
18 derivational patterns (3 prefixes and 15 suf-
fixes) and 7449 instances (cf. Table 3).

POS Affix Example Inst.

verb/adj -able believe - believable 227
noun/adj -al doctor - doctoral 295
verb/noun -er repeat - repeater 874
noun/adj -ful use - useful 103
noun/adj -ic algorithm - algorithmic 330
verb/noun -ion erupt - eruption 687
noun/noun -ist drama - dramatist 294
adj/noun -ity accessible - accessibility 422
noun/verb -ize cannibal - cannibalize 155
noun/adj -less word - wordless 172
adj/adv -ly diagonal - diagonally 1,897
verb/noun -ment equip - equipment 215
adj/noun -ness empty - emptiness 652
noun/adj -ous religion - religious 207
noun/adj -y sport - sporty 454
adj/adj in- dispensable - indispensable 151
verb/verb re- write - rewrite 136
adj/adj un- familiar - unfamiliar 178

Table 3: English dataset (Lazaridou et al., 2013).

2.2 Word Embedding Vectors

We relied on the German and English COW web
corpora2 (Schäfer and Bildhauer, 2012) to obtain
vector representations. The corpora contain 20
billion words and 9 billion words, respectively.
We parsed the corpora using state-of-the-art
pipelines integrating the MarMoT tagger and the
MATE parser (Müller et al., 2013; Bohnet, 2010),
and induced window co-occurrences for all cor-
pus lemma–POS pairs and co-occurring nouns,
verbs and adjectives in a 5-lemma window. We
then created 400-dimensional word representa-
tions using the hyperwords toolkit (Levy et al.,
2015), with context distribution smoothing of
0.75 and positive point-wise mutual information
weighting together with singular value decom-
position. The resulting vector space models con-
tain approximately 460000 lemmas for German
and 240000 lemmas for English.

2.3 Prediction Methods

2.3.1 Baseline

A baseline method that simply guesses the de-
rived term has a chance of approx. 1

460000 for
German and 1

240000 for English to predict the cor-
rect term. We thus apply a more informed base-
line, the same as in Kisselew et al. (2015), and

2http://corporafromtheweb.org
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predict the derived term at exactly the same po-
sition as the base term.

2.3.2 Additive Method (AvgAdd)

AvgAdd is a re-implementation of the best
method in Kisselew et al. (2015):3 For each affix,
the method learns a difference vector by com-
puting the dimension-wise differences between
the vector representations of base term A and
derived term B . The method thus learns a cen-
troid~c for all relevant training pairs (N ) with the
same affix:

~c = 1

N

n∑
i=0

(Bi − Ai ) (1)

For each PV test instance with this affix, the
learned centroid vector is added dimension-
wise to the vector representation of the base
term to predict a position for the derived term.

2.3.3 Restricting the Training Space
(BestAdd)

Avg-Add learns a vector representation based on
the full available training data for each deriva-
tional pattern. In this paper, we suggest a
method BestAddk that restricts the training items
of a given base term to those BV–PV train-
ing instances that include the k nearest base
verbs (using k = 1,3,5) according to their co-
sine. The motivation for our adjusted method
relies on the observation that particles are very
ambiguous and thus differ in their meanings
across particle verbs. For example, the mean-
ings of ’an’ include a directed contact as in
sprechen::ansprechen (to speak/to speak to s.o.)
and in schreiben::anschreiben (to write/to write
to s.o.), and also a start of an action as in spie-
len::anspielen (to play/to start playing) and in
stimmen::anstimmen (to pitch/to start singing).
We assume that base verbs that are distribution-
ally similar also behave in a similar way when
combined with a specific particle, and that a
more restricted training set that is however spec-
ified for BV semantics outperforms a larger train-
ing set across wider BV meanings.

2.3.4 3CosMul

We also re-implemented 3CosMul (Levy and
Goldberg, 2014), a method that has been proven
successful in solving analogy tasks, such as man

3We also conducted experiments with the least-squares
error objective method LexFun but the results were clearly
inferior to the AvgAdd method.

(A) is to ki ng (B) as woman (C) is to queen (D).
3CosMul does not explicitly predict a position in
space but selects a target D in space that is close
to B and C but not close to A. We applied 3Cos-
Mul by always using the most similar training in-
stance (as for BestAdd with k = 1).

2.4 Local Scaling

All methods introduced in the previous section
perform a nearest neighbor search at the pre-
dicted position. We suggest to improve the pre-
diction quality at this stage by mitigating the
hubness problem (Dinu et al., 2015). Hubs
are objects in vector space that are likely to
appear disproportionately often among near-
est neighbors, without necessarily being seman-
tically related. Hubness has been shown an
intrinsic problem of high-dimensional spaces
(Tomasev, 2014). In order to reduce hub-
ness, three unsupervised methods to re-scale the
high-dimensional distances have been proposed
(Schnitzer et al., 2014): local scaling, global scal-
ing, and shared nearest neighbors. We focus on a
local scaling (LS) type of hubness-correcting dis-
tance measure, namely the non-iterative contex-
tual measure N I (Jégou et al., 2007):

N I (x, y) = dx yp
µx ·µy

(2)

N I relies on the average distance µ of x and y to
their k nearest neighbors. It increases the simi-
larity between x and y in cases where we observe
low average similarities between x, y and its k
nearest neighbors. Intuitively, if a word x is not
even close to its nearest neighbors but compa-
rably close to y then we increase the similarity
between x and y .

For 3CosMul, we adapt local scaling by scaling
over the neighborhood information for all four
parts (A, B, C and D) in the analogy:

3CosMul+LS (D) = 3CosMul(D)
4pµA ·µB ·µC ·µD

3 Results

3.1 BestAdd and Local Scaling

Table 4 presents macro-averaged recall-out-of-5
scores, giving equal weight to each derivation re-
gardless of the number of instances. Across the
three datasets, the default results (i.e., without
local scaling) obtained with our novel method
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Particle Verbs (DE) Kisselew (DE) Lazaridou (EN)
Method Default + NI15 Default +NI15 Default + NI15

Baseline 10.79% 16.08% 15.36%

AvgAdd 11.82% +1.28% 24.26% +3.14% 24.19% +2.95%

BestAdd1 10.22% +1.19% 33.91% +3.97% 27.32% +1.87%
BestAdd3 14.26% +2.24% 38.50% +4.17% 37.06% +1.40%
BestAdd5 14.44% +1.97% 38.07% +4.61% 38.49% +2.12%

3CosMul 10.06% -0.73% 33.91% + 1.04% 27.88% +0.90%

Table 4: Macro-averaged recall-out-of-5 across methods, with and without local scaling N I15.
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Figure 1: Recall-out-of-5 results across methods, for the German PV derivation dataset.

BestAdd (with k = {3,5}) are significantly4 above
AvgAdd (p < 0.01), the previously best method
for the existing German and English datasets.
BestAdd with k = 1 and 3CosMul perform at a
similar level than AvgAdd, but for our new PV
derivation dataset do not even outperform the
baseline. Restricting the training process to a
small selection of nearest neighbors therefore
has a positive impact on the prediction quality.

Furthermore, local scaling relying on k = 15
nearest neighbors (N I15) improves the predic-
tion results in all but one cases. These improve-
ments are however not significant.

The results in Table 4 also demonstrate that
predicting particle verbs is the most challeng-
ing derivation task, as the results are significantly
lower than for the other two datasets. Figure 1
once more illustrates the recall-out-of-5 results
for our new PV dataset. In the following, we
zoom into dataset derivation types.

3.2 Improvement across Derivation Types
and Languages

Figures 2 to 4 break down the results from Table 4
across the German and English derivation types.

4Significance relies on χ2.

The blue bars show the BestAdd3 results, and
the green stacked bars represent the additional
gain using local scaling (NI15). The yellow points
correspond to baseline performance, and the
dotted black lines to the AvgAdd results.

We can see that BestAdd3 not only outper-
forms the previously best method AvgAdd on av-
erage but also for each derivation type. Also, lo-
cal scaling provides an additional positive im-
pact for all but one particle type in German, ab-,
and for all but three derivation types in English,
-able, -al, -less.

At the same time, we can see that the im-
pact of local scaling is different across deriva-
tion types. For example, looking into the data we
observe that mit PVs are often wrongly mapped
to nouns, and BestAdd and local scaling correct
this behavior: The nearest neighbors of the verb
erledigen (to manage sth.) with BestAdd3 are
Botengang (errand), Haushaltsarbeit (domestic
work), Hausmeisterarbeit (janitor work), and fur-
ther six compounds with the nominal head Ar-
beit (work). Additional local scaling predicts the
correct PV miterledigen (to manage sth. in addi-
tion) as second nearest neighbor.
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Figure 2: Performance gain across particle types.
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Figure 3: Performance gain for derivation types
in Kisselew et al. (2015).
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Figure 4: Performance gain for derivation types
in Lazaridou et al. (2013).

3.3 Recall-out-of-x across Particle Types

Figure 5 focuses on the particle types, but varies
the strength of the evaluation measure. Rely-
ing on BestAdd3 with local scaling NI15, we ap-
ply recall-out-of-x with x ∈ [1,10]. With one ex-
ception (zu), all particle types achieve a perfor-
mance of 15-23% for recall-out-of-5, so zu had a
negative impact on the average score in Table 4.
Looking at recall-out-of-10, the performances go
up to 20-30%. While PVs with the rather non-
ambiguous mit are again modeled best, also PVs
with strongly ambiguous particles (such as an
and auf ) are modeled well.
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Figure 5: Recall-out-of-[1,10] across particles.

4 Conclusion

We suggested two ways to improve the pre-
diction of derived terms for English and Ger-
man. Both (i) particle-verb motivated training-
space restrictions and (ii) local scaling to ad-
dress hubness in high-dimensional spaces had
a positive impact on the prediction quality of
derived terms across datasets. Particle-specific
explorations demonstrated the difficulty of this
derivation, and differences across particle types.
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