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Abstract

Reasoning over several premises is not
a common feature of RTE systems as it
usually requires deep semantic analysis.
On the other hand, FraCaS is a collec-
tion of entailment problems consisting of
multiple premises and covering semanti-
cally challenging phenomena. We employ
the tableau theorem prover for natural lan-
guage to solve the FraCaS problems in a
natural way. The expressiveness of a type
theory, the transparency of natural logic
and the schematic nature of tableau infer-
ence rules make it easy to model chal-
lenging semantic phenomena. The effi-
ciency of theorem proving also becomes
challenging when reasoning over several
premises. After adapting to the dataset, the
prover demonstrates state-of-the-art com-
petence over certain sections of FraCaS.

1 Introduction

Understanding and automatically processing the
natural language semantics is a central task for
computational linguistics and its related fields. At
the same time, inference tasks are regarded as the
best way of testing an NLP systems’s semantic ca-
pacity (Cooper et al., 1996, p. 63). Following this
view, recognizing textual entailment (RTE) chal-
lenges (Dagan et al., 2005) were regularly held
which evaluate the RTE systems based on the RTE
dataset. The RTE data represents a set of text-
hypotheses pairs that are human annotated on the
inference relations: entailment, contradiction and
neutral. Hence it attempts to evaluate the systems
on human reasoning. In general, the RTE datasets
are created semi-automatically and are often mo-
tivated by the scenarios found in the applications
like question answering, relation extraction, infor-

mation retrieval and summarization (Dagan et al.,
2005; Dagan et al., 2013). On the other hand,
the semanticists are busy designing theories that
account for the valid logical relations over nat-
ural language sentences. These theories usually
model reasoning that depends on certain seman-
tic phenomena, e.g., Booleans, quantifiers, events,
attitudes, intensionality, monotonicity, etc. These
types of reasoning are weak points of RTE systems
as the above mentioned semantic phenomena are
underrepresented in the RTE datasets.

In order to test and train the weak points of
an RTE system, we choose the FraCaS dataset
(Cooper et al., 1996). The set contains complex
entailment problems covering various challeng-
ing semantic phenomena which are still not fully
mastered by RTE systems. Moreover, unlike the
standard RTE datasets, FraCaS also allows multi-
premised problems. To account for these com-
plex entailment problems, we employ the theorem
prover for higher-order logic (Abzianidze, 2015a),
which represents the version of formal logic mo-
tivated by natural logic (Lakoff, 1970; Van Ben-
them, 1986). Though such expressive logics usu-
ally come with the inefficient decision procedures,
the prover maintains efficiency by using the infer-
ence rules that are specially tailored for the reason-
ing in natural language. We introduce new rules
for the prover in light of the FraCaS problems and
test the rules against the relevant portion of the set.
The test results are compared to the current state-
of-the-art on the dataset.

The rest of the paper is structured as follows.
We start with introducing a tableau system for nat-
ural logic (Muskens, 2010). Section 3 explores
the FraCaS dataset in more details. In Section 4,
we describe the process of adapting the theorem
prover to FraCaS, i.e. how specific semantic phe-
nomena are modeled with the help of tableau rules.
Several premises with monotone quantifiers in-
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1 every prover (quickly halt) : [] : T
2 most (tableau prover) terminate : [] : F

MON↑[1,2]

3 quickly halt : [c] : T
4 terminate : [c] : F

7 halt : [c] : T

15 ×

5 every prover : [P ] : T
6 most (tableau prover) : [P ] : F

MON↓[5,6]

8 prover : [d] : F
9 tableau prover : [d] : T

13 prover : [d] : T

14 ×

10 every : [Q,P ] : T
11 most : [Q,P ] : F

12 ×

⊆[3]

≤×[4,7]

⊆[9]

≤×[8,13]

≤×[10,11]

Figure 1: A closed tableau proves that every
prover halts quickly entails most tableau provers
terminate. Each branch growth is marked with the
corresponding rule application.

crease the search space for proofs. In Section 5,
we present several rules that contribute to shorter
proofs. In the evaluation part (Section 6), we an-
alyze the results of the prover on the relevant Fra-
CaS sections and compare them with the related
RTE systems. We end with possible directions of
future work.

2 Tableau theorem prover for natural
language

Reasoning in formal logics (i.e., a formal language
with well-defined semantics) is carried out by au-
tomated theorem provers, where the provers come
in different forms based on their underlying proof
system. In order to mirror this scenario for rea-
soning in natural language, Muskens (2010) pro-
posed to approximate natural language with a ver-
sion of natural logic (Lakoff, 1970; Van Benthem,
1986; Sánchez-Valencia, 1991) while a version of
analytic tableau method (Beth, 1955; Hintikka,
1955; Smullyan, 1968), hereafter referred to as
natural tableau, is introduced as a proof system
for the logic. The version of natural logic em-
ployed by Muskens (2010) is higher-order logic
formulated in terms of the typed lambda calcu-
lus (Church, 1940).1 As a result, the logic is

1More specifically, the logic is two-sorted variant of Rus-
sell’s type theory, which according to Gallin (1975) rep-
resents a more general and neat formulation of Montague
(1970)’s intensional logic. For theorem proving, we employ

much more expressive (in the sence of modeling
certian phenomena in an intuitive way) than first-
order logic, e.g., it can naturally account for gener-
alized quantifiers (Montague, 1973; Barwise and
Cooper, 1981), monotonicity calculus (Van Ben-
them, 1986; Sánchez-Valencia, 1991; Icard and
Moss, 2014) and subsective adjectives.

What makes the logic natural are its terms,
called Lambda Logical Forms (LLFs), which are
built up only from variables and lexical constants
via the functional application and λ-abstraction.
In this way the LLFs have a more natural ap-
pearance than, for instance, the formulas of first-
order logic. The examples of LLFs are given in
the nodes of the tableau proof tree in Figure 1,
where the type information for terms is omitted.
A tableau node can be seen as a statement of truth
type which is structured as a triplet of a main LLF,
an argument list of terms and a truth sign. The se-
mantics associated with a tableau node is that the
application of the main LLF to the terms of an ar-
gument list is evaluated according to the truth sign.
For instance, the node 9 is interpreted as the term
tableau prover d being true, i.e. d is in the ex-
tension of tableau prover. Notice that LLFs not
only resemble surface forms in terms of lexical el-
ements but most of their constituents are in cor-
respondence too. This facilitates the automatized
generation of LLFs from surface forms.

The natural tableau system of (Muskens, 2010),
like any other tableau systems (D’Agostino et
al., 1999), tries to prove statements by refuting
them. For instance, in case of an entailment proof,
a tableau starts with the counterexample where
the premises are true and the conclusion is false.
The proof is further developed with the help of
schematic inference rules, called tableau rules (see
Figure 2). A tableau is closed if all its branches
are closed, i.e. are marked with a closure (×)
sign. A tableau branch intuitively corresponds to
a situation while a closed branch represents an
inconsistent situation. Refutation of a statement
fails if a closed tableau is obtained. Hence the
closed tableau serves as a proof for the statement.
The proof of an entailment in terms of the closed
tableau is demonstrated in Figure 1. The tableau
starts with the counterexample ( 1 , 2 ) of the en-
tailment. It is further developed by applying the
rule (MON↑) to 1 and 2 , taking into account that

one-sorted type theory, i.e. with the entity e and truth t types,
and hence omit a type s for world-time pairs.
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G A : [
#–

C ] : T
H B : [

#–

C ] : F

A : [
#–

d ] : T
B : [

#–

d ] : F
G : [P,

#–

C ] : T
H : [P,

#–

C ] : F

MON↑

G or H is mon↑ and
#–

d and P are fresh

G A : [
#–

C ] : T
H B : [

#–

C ] : F

A : [
#–

d ] : F
B : [

#–

d ] : T
G : [P,

#–

C ] : T
H : [P,

#–

C ] : F

MON↓

G or H is mon↓ and
#–

d and P are fresh

A N : [
#–

C ] : T

N : [
#–

C ] : T
⊆ where A is subsective

A : [
#–

C ] : T
B : [

#–

C ] : F

×
≤×where A entails B

written as A ≤ B

Figure 2: The tableau rules employed by the
tableau proof in Figure 1

every is upward monotone in the second argument
position. The rule application is carried out un-
til all branches are closed or no new rule applica-
tion is possible. In the running example, all the
branches close as (≤×) identifies inconsistencies
there; for instance, 4 and 7 are inconsistent ac-
cording to (≤×) assuming that a knowledge base
(KB) provides that halting entails termination, i.e.
halt ≤ terminate.

The natural tableau system was succesfully ap-
plied to the SICK textual entailment problems
(Marelli et al., 2014) by Abzianidze (2015a). In
particular, the theorem prover for natural lan-
guage, called LangPro, was implemented that inte-
grates three modules: the parsers for Combinatory
Categorial Grammar (CCG) (Steedman, 2000),
LLFgen that generates LLFs from the CCG deriva-
tion trees, and the natural logic tableau prover
(NLogPro) which builds tableau proofs. The
pipeline architecture of the prover is depicted in
Figure 3: the sentences of an input problem are
first parsed, then converted into LLFs, which are
further processed by NLogPro. For a CCG parser,
there are at least two options, C&C (Clark and
Curran, 2007; Honnibal et al., 2010) and Easy-
CCG (Lewis and Steedman, 2014). The inventory
of rules (IR) of NLogPro is a crucial component
for the prover; it contains most of the rules found

LangPro

CCG parser
C&C
EasyCCG

LLFgen
Tree to term
Fixing terms

Aligner

Type-raising

NLogPro
Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

Signature

Figure 3: The architecture of LangPro

in (Muskens, 2010) and also additional rules that
were collected from SICK. In order to make the-
orem proving robust, LangPro employs a conser-
vative extension of the type theory for accessing
the syntactic information of terms (Abzianidze,
2015b): in addition to the basic semantic types e
and t, the extended type theory incorporates ba-
sic syntactic types n, np, s and pp corresponding
to the primitive categories of CCG.

Abzianidze (2015a) shows that on the unseen
portion of SICK LangPro obtains the results com-
parable to the state-of-the-art scores while achiev-
ing an almost perfect precision. Based on this in-
spiring result, we decide to adapt and test LangPro
on the FraCaS problems, from the semantics point
of view much more harder than the SICK ones.2

3 FraCaS dataset

The FraCaS test suite (Cooper et al., 1996) is a
set of 346 test problems. It was prepared by the
FraCaS consortium as an initial benchmark for se-
mantic competence of NLP systems. Each Fra-
CaS problem is a pair of premises and a yes-no-
unknown question that is annotated with a gold
judgment: yes (entailment), no (contradiction), or
unknown (neutral). The problems mainly con-
sist of short sentences and resemble the problems
found in introductory logic books. To convert the
test suite into the style of RTE dataset, MacCart-
ney and Manning (2007) translated the questions
into declarative sentences. The judgments were
copied from the original test suite with slight mod-
ifications.3 Several problems drawn from the ob-
tained FraCaS dataset are presented in Table 1.

Unlike other RTE datasets, the FraCaS prob-
lems contain multiple premises (45% of the total

2An online version of LangPro is available at: http:
//lanthanum.uvt.nl/labziani/tableau/

3More details about the conversion, including informa-
tion about several noisy problems (e.g., a problem missing
a premise or hypothesis, or having a non-standard gold an-
swer) can be found in MacCartney (2009). The FraCaS RTE
dataset is available at: http://www-nlp.stanford.
edu/˜wcmac/downloads/fracas.xml
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problems) and are structured in sections accord-
ing to the semantic phenomena they concern. The
sections cover generalized quantifiers (GQs), plu-
rals, anaphora, ellipsis, adjectives, comparatives,
temporal reference, verbs and attitudes. Due to
the challenging problems it contains, the FraCaS
dataset can be seen as one of the most complex
RTE data from the semantics perspective. Unfor-
tunately, due to its small size the dataset is not
representative enough for system evaluation pur-
poses. The above mentioned facts perhaps are the
main reasons why the FraCaS data is less favored
for developing and assessing the semantic compe-
tence of RTE systems. Nevertheless, several RTE
systems (MacCartney and Manning, 2008; Angeli
and Manning, 2014; Lewis and Steedman, 2013;
Tian et al., 2014; Mineshima et al., 2015) were
trained and evaluated on (the parts of) the dataset.
Usually the goal of these evaluations is to show
that specific theories/frameworks and the corre-
sponding RTE systems are able to model deep se-
mantic reasoning over the phenomena found in
FraCaS. Our aim is also the same in the rest of
the sections.

4 Modeling semantic phenomena

Modeling a new semantic phenomenon in the nat-
ural tableau requires introduction of special rules.
The section presents the new rules that account for
certain semantic phenomena found in FraCaS.

FraCaS Section 1, in short FrSec-1, focuses on
GQs and their monotonicity properties. Since the
rules for monotonicity are already implemented in
LangPro, in order to model monotonicity behav-
ior of a new GQ, it is sufficient to define its mono-
tonicity features in the signature. For instance, few
is defined as fewn↓,vp↓,s while many and most are
modeled as manyn,vp↑,s and mostn,vp↑,s respec-
tively.4 The contrast between monotonicity prop-
erties of the first arguments of few and many is
conditioned solely by the intuition behind the Fra-
CaS problems: few is understood as an absolute
amount while many as proportional (see Fr-56 and
76 in Table 1). Accounting for the monotonicity
properties of most, i.e. mostn,vp↑,s, is not suf-
ficient for fully capturing its semantics. For in-
stance, solving Fr-26 requires more than just up-

4Following the conventions in (Sánchez-Valencia, 1991),
we mark the argument types with monotonicity properties as-
sociated with the argument positions. In this way, fewn↓,vp↓,s

is downward monotone in its noun and VP arguments, where
vp abbreviates (np, s).

ID FraCaS entailment problem
6
no

P: No really great tenors are modest.
C: There are really great tenors who are modest.

26
yes

P1: Most Europeans are resident in Europe.
P2: All Europeans are people.
P3: All people who are resident in Europe can travel
freely within Europe.
C: Most Europeans can travel freely within Europe.

44
yes

P1: Few committee members are from southern Europe.
P2: All committee members are people.
P3: All people who are from Portugal are from southern
Europe.
C: There are few committee members from Portugal.

56
unk

P1: Many British delegates obtained interesting results
from the survey.
C: Many delegates obtained interesting results from the
survey.

76
yes

P1: Few committee members are from southern Europe.
C: Few female committee members are from southern
Europe.

85
no

P1: Exactly two lawyers and three accountants signed the
contract.
C: Six lawyers signed the contract.

99
yes

P1: Clients at the demonstration were all impressed by
the system’s performance.
P2: Smith was a client at the demonstration.
C: Smith was impressed by the system’s performance.

100
yes

P: Clients at the demonstration were impressed by the
system’s performance.
C: Most clients at the demonstration were impressed by
the system’s performance.

211
no

P1: All elephants are large animals.
P2: Dumbo is a small elephant.
C: Dumbo is a small animal.

Table 1: Samples of the FraCaS problems

ward monotonicity of most in its second argument.
We capture the semantics, concerning more than a
half, of most by the following new rule:

mostq N A : [] : T
mostq N B : [] : X

A : [ce] : T
B : [ce] : X
N : [ce] : T

MOST, where q ≡ (n, vp, s)
and X is either T or F

With (MOST), now it is possible to prove Fr-26
(see Figure 4). The rule efficiently but partially
captures the semantics of most. Modeling its com-
plete semantics would introduce unnecessary inef-
ficiency in the theorem proving.5

FrSec-1 involves problems dedicated to the con-
servativity phenomenon (1). Although we have

5For complete proof-theoretic semantics of most wrt same
and all in syllogistic logic see Endrullis and Moss (2015).
Similar rules that account for additional semantics of few and
many are presented in Section 5 as they coincide with efficient
rules for other quantifiers.
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1 most E iriE: []: T
2 every E (λx. s person (λy. be y x)): []: T

3 every (who iriE person) cftwE: []: T
4 most E cftwE: []: F

7 iriE: [c]: T
8 cftwE: [c]: F

9 E: [c]: T

10 (λx. s person (λy. be y x)): [c]: T

11 s person (λy. be y c): []: T

12 person: [c]: T

13 who iriE person: [c]: F

∧F[13]

21 person: [c]: F

23 ×
≤×[12,21]

20 iriE: [c]: F

22 ×
≤×[7,20]

∀v
T[3,8]

λBE[11]

λ<[10]

∀n
T [2,9]

MOST[1,4]

Figure 4: The tableau proof, generated by Lang-
Pro, classifies Fr-26 as entailment. The abbrevia-
tions cftwE, iriE and E stand for the LLFs of can
freely travel within Europe, is resident in Europe
and European, respectively. The nodes that do not
contribute to the closure of the tableau are omitted.
The proof also employs the admissible rules (∀nT)
and (∀vT) from Section 5.

not specially modeled the conservativity property
of GQs in LangPro, it is able to solve all 16
poblems about conservativity except one. The rea-
son is that conservativity is underrepresented in
FraCaS. Namely, the problems cover conservativ-
ity in the form of (2) instead of (1) (see Fr-6).

Q A are B ↔ Q A are A who are B (1)

Q A are B ↔ There are Q A who are B (2)

We capture (2) with the help of the existing rules
for GQs and (THR×), from (Abzianidze, 2015b),
which treats the expletive constructions, like there
is, as a universal predicate, i.e., any entity not sat-
isfying it leads to inconsistency (×).

be c there : [] : F

×
THR×

But these rules are not enough for solving Fr-

44 because the monotonicity rules cannot lead to
the solution when applied to the following nodes
representing P1 and C of Fr-44, respectively.

few M (be from S) : [] : T (3)

few (from P M) (λx.be x there) : [] : F (4)

To solve Fr-44, we introduce a new tableau rule
(THR PP) which acts as a paraphrase rule. After
the rule is applied to (4), (MON↓) can be applied
to the resulted node and (3) which contrasts being
from southern Europe to being from Portugal.
Q (pnp,n,nA N)(λx.be x there) : [] : X

Q N (be (p A)) : [] : X
THR PP

FrSec-2 covers the problems concerning plu-
rals. Usually the phrases like bare plurals, definite
plurals and definite descriptions (e.g., the dog) do
not get special treatment in wide-coverage seman-
tic processing and by default are treated as indefi-
nites. Since we want to take advantage of the ex-
pressive power of the logic and its proof system,
we decide to separately model these phrases. We
treat bare plurals and definite plurals as GQs of the
form sn,vp,sNn, where s stands for the plural mor-
pheme. The quantifier s can be ambiguous in LLFs
due to the ambiguity related to the plurals: they
can be understood as more than one, universal or
quasi-universal (i.e. almost every). Since most of
the problems in FraCaS favor the latter reading,
we model s as a quasi-universal quantifier. We in-
troduce the following lexical knowledge, s ≤ a
and s ≤ most, in the KB and allow the existential
quantification rules (e.g., ∃T) to apply the plural
terms sN . With this treatment, for instance, the
prover is able to prove the entailment in Fr-100.

We model the definite descriptions as general-
ized quantifiers of the form theN , where the rules
make the act as the universal and existential quan-
tifiers when marked with T and as the existential
quantifier in case of F. Put differently, (∀T), (∃T)
and (∃F) allow the quantifier in their antecedent
nodes to match the.

gq N V : [] : T

N : [ce] : F V : [ce] : T
∀T

g ∈ {every, the} and ce is old

gq N V : [] : F

N : [ce] : F V : [ce] : F
∃F

g ∈ {a, the} and ce is old

gq N V : [] : T

N : [ce] : T
V : [ce] : T

∃T

g ∈ {a, s, the}
and ce is fresh

This choice guarantees that, for example, the
demonstration in the premises of Fr-99 co-refer
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and allow the proof for entailment. This approach
also maintains the link if there are different sur-
face forms co-referring, e.g., the demonstration
and the presentation, in contrast to the approach
in Abzianidze (2015a).

FrSec-2 also involves several problems with
contrasting cardinal phrases like exactly n and m,
where n < m (see Fr-85). We account for these
problems with the closure rule (×EXCT), where
the type q, the predicate greater/2 and the do-
main for E act as constraints.

Eq,qNq : [
#–

C ] : T
Mq : [

#–

C ] : T

×
×EXCT

such that
E ∈ {just, exactly}
and greater(M,N)

FrSec-5 contains RTE problems pertaining to
various types of adjective. First-order logic has
problems with modeling subsective or privative
adjectives (Kamp and Partee, 1995), but they
are naturally modeled with higher-order terms.
A subsective term, e.g., smalln,n, is a rela-
tion over a comparison class and an entity, e.g.,
smalln,n animaln ce is of type t as n is a subtype of
et according to the extended type theory (Abzian-
idze, 2015b). The rule (⊆) in Figure 2 accounts
for the subsective property. With the help of it,
the prover correctly identifies Fr-211 as contradic-
tion (see Figure 5). In case of the standard first-
order intersective analysis, the premises of Fr-211
would be translated as:

small(dumbo) ∧ elephant(dumbo) ∧
∀x(elephant(x)→ (large(x) ∧ animal(x)))
which is a contradiction given that small and
large are contradictory predicates. Therefore,
due to the principle of explosion everything, in-
cluding the conclusion and its negation, would be
entailed from the premises.

FrSec-9, about attitudes, is the last section we
explore. Though the tableau system of (Muskens,
2010) employs intensional types, LangPro only
uses extensional types due to simplicity of the sys-
tem and the paucity of intensionality in RTE prob-
lems. Despite the fact, with the proof-theoretic ap-
proach and extensional types, we can still account
for a certain type of reasoning on attitude verbs by
modeling entailment properties of the verbs in the
style of Nairn et al. (2006) and Karttunen (2012).
For example, know has (+/+) property meaning
that when it occurs in a positive embedding con-
text, it entails its sentential complement with a
positive polarity. Similarly, manage to is (+/+)

1 every elephant (λx. s (large animal) (λy be y x)) : [] : T
2 a (small elephant) (λx.be x dumbo) : [] : T
3 a (small animal) (λx.be x dumbo) : [] : T

4 small animal : [dumbo] : T

5 small elephant : [dumbo] : T

6 elephant : [dumbo] : T

7 λx. s (large animal) (λy.be y x) : [dumbo] : T

8 s (large animal) (λy.be y dumbo) : [] : T

9 large animal : [dumbo] : T

10 small : [animal,dumbo] : T
11 large : [animal,dumbo] : T

12 ×

λBE[3]

λBE[2]

⊆[5]

∀n
T [1,6]

λ<[7]

λBE[8]

>[4,9]

×| [10,11]

Figure 5: The closed tableau by LangPro proves
Fr-211 as contradiction.

and (-/-) because John managed to run entails
John run and John did not manage to run entails
John did not run. We accommodate the entail-
ment properties in the tableau system in a straight-
forward way, e.g., terms with (+/+) property, like
know and manage, are modeled via the rule (+/+)
where ?p is an optional prepositional or particle
term. The rest of the three entailment properties
for attitude verbs are captured in the similar way.

h++
α,vp(?pα,α Vα) : [d] : T

Vα : [
#–

E] : T
+/+

such that if α = vp, then
#–

E = d;
otherwise α = s and

#–

E is empty

We also associate the entailment properties with
the phrases it is true that and it is false that and
model them via the corresponding tableau rules.

Our account for intensionality with the exten-
sional types represents a syntactic approach rather
than semantic. From the semantics perspective,
the extensional types license John knowing all true
statement if he knows at least one of them. But us-
ing the proof system, a syntactic machinery, we
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avoid such unwanted entailments with the absence
of rules. In future, we could incorporate inten-
sional types in LangPro if there is representative
RTE data for the intensionality phenomenon.

The rest of the FraCaS sections were skipped
during the adaptation phase for several reasons.
FrSec-3 and FrSec-4 are about anaphora and el-
lipsis respectively. We omitted these sections as
recently pronoun resolution is not modeled in the
natural tableau and almost all sentences involving
ellipsis are wrongly analyzed by the CCG parsers.
In the current settings of the natural tableau, we
treat auxiliaries as vacuous, due to this reason
LangPro cannot properly account for the problems
in FrSec-8 as most of them concern the aspect of
verbs. FrSec-6 and FrSec-7 consists of problems
with comparatives and temporal reference respec-
tively. To account the latter phenomena, the LLFs
of certain constructions needs to be specified fur-
ther (e.g., for comparative phrases) and additional
tableau rules must be introduced that model calcu-
lations on time and degrees.

5 Efficient theorem proving

Efficiency in theorem proving is crucial as we do
not have infinite time to wait for provers to termi-
nate and return an answer. Smaller tableau proofs
are also easy for verifying and debugging. The
section discusses the challenges for efficient theo-
rem proving induced by the FraCaS problems and
introduces new rules that bring efficiency to some
extent.

The inventory of rules is a main component of a
tableau method. Usually tableau rules are such in-
ference rules that their consequent expressions are
not larger than the antecedent expressions and are
built up from sub-parts of the antecedent expres-
sions. The natural tableau rules also satisfy these
properties which contribute to the termination of
tableau development. But there is still a big chance
that a tableau does not terminate or gets unneces-
sarily large. The reasons for this is a combina-
tion of branching rules, δ-rules (introducing fresh
entity terms), γ-rules (triggered for each entity
term), and non-equivalent rules (the antecedents
of which must be accessible by other rules too).6

6For instance, (MON↑) and (MON↓) in Figure 2 are both
branching and δ. They are also non-equivalent since their
consequents are semantically weaker than their antecedents;
this requires that after their application, the antecedent nodes
are still reusable for further rule applications. On the other
hand, (∀T) is non-equivalent and γ; for instance, for any en-

Efficeint theorem proving with LangPro becomes
more challenging with multi-premised problems
and monotonic GQs. More nodes in a tableau
give rise to more choice points in rule applications
and monotonic GQs are usually available for both
monotonic and standard semantic rules.

To encourage short tableau proofs, we introduce
eight admissible rules — the rules that are redun-
dant from completeness point of view but repre-
sent smart shortcuts of several rule applications.7

Half of the rules for the existential (e.g., a and the)
and universal (e.g., every, no and the) quantifiers
are γ-rules.8 To make application of these rules
more efficient, we introduce two admissible rules
for each of the γ-rules. For instance, (∀nT) and (∀vT)
are admissible rules which represent the efficient
but incomplete versions of (∀T):

q N V : [] : T
N : [c] : T

V : [c] : T
∀nT

q N V : [] : T
V : [c] : F

N : [c] : F
∀vT

where q ∈ {every, the}
Their efficiency is due to choosing a relevant en-
tity ce, rather than any entity like (∀T) does: (∀nT)
chooses the entity that satisfies the noun term
while (∀vT) picks the one not satisfying the verb
term. Moreover, the admissible rules are not
branching unlike their γ counterparts. Other four
admissible rules account for a and the in a false
context and no in a true context in the similar way.

The monotonicity rules, (MON↑) and (MON↓),
are inefficient as they are branching δ-rules. On
the other hand, the rules for GQs are also inef-
ficient for being a γ or δ-rule. Both types of
rules are often applicable to the same GQs, e.g.,
every and a, as most of GQs have monotonicity
properties. Instead of triggering these two types
of rules separately, we introduce two admissible
rules, (∃FUN↑) and (∅FUN↓), which trigger them
in tandem:
gqN A : [] : T 1
gqN B : [] : F 2

A : [ce] : T 3
B : [ce] : F 4
N : [ce] : T 5

∃FUN↑

g ∈ {a, s,many, every}

hqN A : [] : F
hqN B : [] : T

A : [ce] : T
B : [ce] : F
N : [ce] : T

∅FUN↓

h ∈ {no, few}
tity term ce, it is applicable to every dog bark : [ ] : T and
asserts that either c is not dog or c does bark.

7In other words, if a closed tableau makes use of an ad-
missible rule, the tableau can still be closed with a different
rule application strategy that ignores the admissible rule.

8Remember from Section 4 that the is treated like the uni-
versal and existential quantifiers in certain cases.
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ID FraCaS entailment problem
64
unk

P: At most ten female commissioners spend time at
home.
C: At most ten commissioners spend time at home.

88
unk

P: Every representative and client was at the meeting.
C: Every representative was at the meeting.

109
no

P: Just one accountant attended the meeting.
C: Some accountants attended the meeting.

215
unk

P1: All legal authorities are law lecturers.
P2: All law lecturers are legal authorities.
C: All competent legal authorities are competent law
lecturers.

Table 2: Problems with false proofs

For instance, if g = every, a single application
of (∃FUN↑) already yields the fine-grained seman-
tics: there is ce that is A and N but not B. If the
nodes were processed by the rules for every, (∀F)
would first entail 4 and 5 from 2 and then (∀T)
or (∀nT) would introduce 3 from 1 . (∃FUN↑) also
represents a more specific version of the admissi-
ble rule (FUN↑) of Abzianidze (2015a), which it-
self is an efficient and partial version of (MON↑).

(∃FUN↑) and (∅FUN↓) not only represent ad-
missible rules but they also model semantics of
few and many not captured by the monotonicity
rules. For instance, if few dog bark : [] : F and
few dog bite : [] : T, then a set of entities that
are dog and bark, denoted by [[dog]] ∩ [[bark]], is
strictly larger than [[dog]] ∩ [[bite]] (despite the ab-
solute or relative readings of few). Due to this set
relation, there is an entity in [[dog]] ∩ [[bark]] and
not in [[bite]]. Therefore, we get the inference en-
coded in (∅FUN↓). Similarly, it can be shown that
many satisfies the inference in (∃FUN↑).

6 Evaluation

After adapting the prover to the FraCaS sections
for GQs, plurals, adjectives and attitudes, we eval-
uate it on the relevant sections and analyze the per-
formance. Obtained results are compared to re-
lated RTE systems.

We run two version of the prover, ccLangPro
and easyLangPro, that employ CCG derivations
produced by C&C and EasyCCG respectively. In
order to abstract from the parser errors to some
extent, the answers from both provers are aggre-
gated in LangPro: a proof is found iff one of the
parser-specific provers finds a proof. The evalua-
tion results of the three versions of LangPro on the
relevant FraCaS sections are presented in Table 3
along with the confusion matrix for LangPro.

Meas% ccLP eLP LP
Prec 94 93 94
Rec 73 71 81
Acc 80 79 85

Gold\LP YES NO UNK

YES 60 0 14
NO 1 14 2
UNK 4 0 47

Table 3: Measures of ccLangPro (ccLP), easy-
LangPro (eLP) and LangPro (LP) on FraCaS sec-
tions 1, 2, 5, 9 and the confusion matrix for LP.

The results show that LangPro performs slightly
better with C&C compared to EasyCCG. This is
due to LLFgen which is mostly tuned on the C&C
derivations. Despite this bias, easyLangPro proves
8 problems that were not proved by ccLangPro. In
case of half of these problems, C&C failed to re-
turn derivations for some of the sentences while
in another half of the problems the errors in C&C
derivations were crucial, e.g., in the conclusion of
Fr-44 committee members was not analyzed as a
constituent. On the other hand, ccLangPro proves
10 problems unsolved by easyLangPro, e.g., Fr-
6 was not proved because EasyCCG analyzes re-
ally as a modifier of are in the conclusion, or even
more unfortunate, the morphological analyzer of
EasyCCG cannot get the lemma of clients cor-
rectly in Fr-99 and as a result the prover cannot
relate clients to client.

The precision of LangPro is high due to its
sound inference rules. Fr-109 in Table 2 was
the only case when entailment and contradiction
were confused: plurals are not modeled as strictly
more than one.9 The false proves are mostly due
to a lack of knowledge about adjectives. Lang-
Pro does not know a default comparison class
for clever, e.g., clever person→clever but clever
politician6→clever). Fr-215 was proved as entail-
ment because we have not modeled intensionality
of adjectives. Since EasyCCG was barely used
during adaptation (except changing most of NP
modifiers into noun modifiers), it analyzed at most
in Fr-64 as a sentential modifier which was not
modeled as downward monotone in the signature.
Hence, by default, it was considered as upward
monotone leading to the proof for entailment.

There are several reasons behind the problems
that were not proved by the prover. Several prob-
lems for adjectives were not proved as they con-

9Moreover, Fr-109 is identical to Fr-107 which has yes as
a gold answer. Another inconsistency in gold answers of Fr-
87 and Fr-88 (due to the ambiguous premise) is a reason for a
false proof. While Fr-87 was correctly proved by the prover,
obviously Fr-88 was misclassified automatically.
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Sec (Sing/All)
Single-premised (Acc %) Multi-premised (Acc %) Overall (Acc %)

BL NL07,08 LS P/G NLI T14a,b M15 LP BL LS P/G T14a,b M15 LP BL LS P/G T14a,b M15 LP

1 GQs (44/74) 45 84 98 70 89 95 80 93 82 93 57 50 80 80 97 73 93 50 62 85 80 95 78 93
2 Plur (24/33) 58 42 75 - 38 - 67 75 67 - - 67 67 61 - - 67 73
5 Adj (15/22) 40 60 80 - 87 - 87 87 43 - - 29 43 41 - - 68 73
9 Att (9/13) 67 56 89 - 22 - 78 100 50 - - 75 75 62 - - 77 92

1,2,5,9 (92/142) 50 - 88 - - - 78 88 56 - - 66 80 52 - - 74 85

Table 4: Comparison of RTE systems tested on FraCaS: NL07 (MacCartney and Manning, 2007), NL08
(MacCartney and Manning, 2008), LS (Lewis and Steedman, 2013) with Parser and Gold syntax, NLI
(Angeli and Manning, 2014), T14a (Tian et al., 2014), T14b (Dong et al., 2014) and M15 (Mineshima et
al., 2015). BL is a majority (yes) baseline. Results for non-applicable sections are strikeout.

tained comparative constructions, not covered by
the rules. Some problems assume the universal
reading of plurals. A couple of problems involv-
ing at most were not solved as the parsers often
analyze the phrase in a wrong way.10

We also check the FraCaS sections how repre-
sentative they are for higher-order GQs (HOGQs).
After replacing all occurrences of most, several,
many, s and the with the indefinite a in LLFs,
LangPro–HOGQ (without the HOGQs) achieves an
overall accuracy of 81% over FrSec-1,2,5,9. Com-
pared to LangPro only 6 problems, including Fr-
56, 99, were misclassified while Fr-26, 100 were
solved. This shows that the dataset is not repre-
sentative enough for HOGQs.

In Table 4, the current results are compared to
the RTE systems that have been tested on the sin-
gle or multi-premised FraCaS problems.11 Ac-
cording to the table, the current work shows that
the natural tableau system and LangPro are suc-
cessful in deep reasoning over multiple premises.

The natural logic approach in MacCartney and
Manning (2008) and Angeli and Manning (2014)
models monotonicity reasoning with the exclusion
relation in terms of the string edit operations over
phrases. Since the approach heavily hinges on a
sequence of edits that relates a premise to a con-
clusion, it cannot process multi-premised prob-
lems properly. Lewis and Steedman (2013) and
Mineshima et al. (2015) both base on first-order
logic representations. While Lewis and Steed-
man (2013) employs distributional relation clus-
tering to model the semantics of content words,
Mineshima et al. (2015) extends first-order logic

10Tableau proofs of the FraCaS problems are available at:
http://lanthanum.uvt.nl/langpro/fracas

11Since the FraCaS data is small and usually the prob-
lems are seen during the system development, the compari-
son should be understood in terms of an expressive power of
a system and the underlying theory.

with several higher-order terms (e.g., for most,
believe, manage) and augments first-order infer-
ence of Coq with additional inference rules for the
higher-order terms. Tian et al. (2014) and Dong
et al. (2014) build an inference engine that rea-
sons over abstract denotations, formulas of rela-
tional algebra or a sort of description logic, ob-
tained from Dependency-based Compositional Se-
mantic trees (Liang et al., 2011). Our system and
approach differ from the above mentioned ones in
its unique combination of expressiveness of high-
order logic, naturalness of logical forms (making
them easily obtainable) and flexibility of a seman-
tic tableau method. All these allow to model sur-
face and deep semantic reasoning successfully in
a single system.

7 Future work

We have modeled several semantic phenomena in
the natural tableau theorem prover and obtained
high results on the relevant FraCaS sections. Con-
cerning the FraCaS dataset, in future work we plan
to account for the comparatives and temporal ref-
erence in the natural tableau. After showing that
the natural tableau can successfully model deep
reasoning (e.g., the FraCaS problems) and (rela-
tively) wide-coverage and surface reasoning (e.g.,
the SICK dataset), we see the RTE datasets, like
RTE-1 (Dagan et al., 2005) and SNLI (Bowman et
al., 2015), involving texts obtained from newswire
or crowd-scouring as a next step for developing
the theory and the theorem prover.
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