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Abstract

This paper presents the participation of the
TALN team in the Complex Word Identifica-
tion Task of SemEval-2016 (Task 11). The
purpose of the task was to determine if a word
in a given sentence can be judged as com-
plex or not by a certain target audience. To
experiment with word complexity identifica-
tion approaches, Task organizers provided a
training set of 2,237 words judged as com-
plex or not by 20 human evaluators, together
with the sentence in which each word occurs.
In our contribution we modelled each word to
evaluate as a numeric vector populated with
a set of lexical, semantic and contextual fea-
tures that may help assess the complexity of
a word. We trained a Random Forest clas-
sifier to automatically decide if each word is
complex or not. We submitted two runs in
which we respectively considered unweighted
and weighted instances of complex words to
train our classifier, where the weight of each
instance is proportional to the number of eval-
vators that judged the word as complex. Our
system scored as the third best performing
one.

1 Introduction

Approaches to automatically identify if a target au-
dience will perceive a certain word as complex or
not constitute a core component in several language-
related areas of research, including Lexical Simpli-
fication (Bott et al., 2012) and Readability Assess-
ment (Collins-Thompson, 2014).

The Complex Word Identification Task of
SemEval-2016 proposes a shared framework for
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evaluating complex word identification systems.
Task participants were provided with a set of sen-
tences where, for each sentence, one or more words
have been rated as complex or not by 20 human eval-
uators. An example sentence from this dataset is:

If the growth rate is known , the maximum lichen
size will give a minimum age for when this rock was
deposited.

In this sentence, the words ’lichen’ and ’de-
posited” were classified as complex by at least one
out of the 20 evaluators, unlike e.g. ’growth’, which
did not received this label by any of them.

In our participation in Task 11, we cast the identi-
fication of complex words as a binary classification
problem in which each word is evaluated as com-
plex or not, given the sentence in which it occurs.
We modelled each word by a set of lexical, semantic
and contextual features and evaluated distinct binary
classification algorithms. Our approach to Task 11
obtained good performance: our team ranked as the
second best performing one and one of the two sys-
tems we proposed scored as the third best perform-
ing system according to the G-score official evalua-
tion metric (harmonic mean between Accuracy and
Recall).

In Section 2 we provide an overview of rele-
vant research related to Complex Word Identifica-
tion. Section 3 and 4 respectively introduce the Task
11 dataset and present the text analysis tools and re-
sources we exploited to characterize complex words.
In Section 5 we describe the word features we used
to build our complex word classifier. In Section 6
we present and discuss the performance of our Task
11 system. Finally, in Section 7 we formulate our
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conclusions and outline future venues of research.

2 Related work

The identification of complex words constitutes a
key aspect of Lexical Simplification (Bott et al.,
2012). It can be defined as the problem of replac-
ing difficult words by their simpler synonyms taking
into account the specific context in which each word
is used. Several techniques have been applied so
far to identify complex words. In the context of the
PSET Project (Devlin and Tait, 1998), the first lexi-
cal simplification system for English was developed,
aimed at people with aphasia. It relies on a word
difficulty assessment based on psycholinguistic evi-
dence (Quinlan, 1992) in order to decide whether to
simplify a word. Recent work exploited the avail-
ability of comparable corpora of original documents
(e.g. English Wikipedia) and their ’simplified’ ver-
sions (e.g. Simple English Wikipedia pages) to in-
duce measures which can be used to compare and
rank ’quasi-synonymic’ word pairs (Yatskar et al.,
2010). (Shardlow, 2013) compares three techniques
to identify complex words in English: a psycholin-
guistic approach (Devlin and Tait, 1998), frequency
thresholding (i.e. words with low frequency are
considered complex), and a machine learning algo-
rithm trained only on word features (frequency, syl-
lable count, ambiguity, etc.). In this work, a cor-
pus of complex words is created based on edit his-
tories from the Simple Wikipedia. The authors con-
clude that the three tested methods perform similarly
in terms of F-measure. (Saggion et al., 2016) use
the combined evidence of word frequency and word
length to assess the word complexity of a list of syn-
onyms so as to select the simpler one in an Spanish
lexical simplification system. (Rello et al., 2013) ar-
gue that word frequency and length are two impor-
tant factors affecting readability and understanding
for people with dyslexia.

Besides lexical simplification, the identification
of complex words constitutes a core component of
readability assessment (Collins-Thompson, 2014),
the problem of quantifying the readability of a given
text. The presence of complex words usually penal-
izes readability. Lists of easy words (Dale and Chall,
1948), word characteristics (Kincaid et al., 1975;
Gunning, 1952; Mc Laughlin, 1969), or word use in
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context (e.g. language models) (Si and Callan, 2001)
are all techniques or resources which have been used
to support the assessment of text readability: these
approaches could also be adapted to evaluate word
complexity.

3 Dataset

The organizers of SemEval-2016 Task 11 released a
training dataset composed of 2,236 words together
with the sentence in which each word occurs. For
each word, the binary complexity judgements of
20 human evaluators were provided (complex word
or not complex word). Similarly, Task 11 testing
dataset consisted of 88,221 words together with the
sentence in which each word occurs. In this case, for
each word, the binary complexity judgement of only
one human annotator was collected.

4 Resources and Tools

In order to identify complex words, we character-
ize each word by means of a set of lexical, semantic
and contextual features. To this purpose, we analyze
both the word and the sentence in which it occurs by
means of the language resources and text analysis
tools described in what follows.

4.1 Language Resources

Information about the frequency of use is impor-
tant to assess word complexity. Therefore, in our
complex word identification approach we exploit the
word frequency data of two large corpora: (i) a 2014
English Wikipedia Dump and (ii) the British Na-
tional Corpus (Leech and Rayson, 2014). We also
use WordNet (Miller, 1995) to model semantic word
features by relying on word senses and synset rela-
tions (e.g. hypernymy). Moreover, we use the Dale
& Chall list of 3,000 simple words (Dale and Chall,
1948) in order to incorporate the text readability di-
mension, as this list contains words which 4th grade
students considered understandable.

4.2 Text Analysis Tools

We analyze the sentences in which a word to eval-
uate occurs by means of the Mate dependency
parser (Bohnet, 2010). As a result, we obtain a lem-
matized and Part-Of-Speech (POS) tagged version



of the sentence, along with its syntactic dependen-
cies. Both POS tags and dependency information
are used to compute several features as described in
the following Section.

We also processed each sentence by the UKB
graph-based Word Sense Disambiguation algo-
rithm (Agirre and Soroa, 2009). Specifically, we
benefited from the UKB implementation integrated
in the Freeling workbench (Padré and Stanilovsky,
2012). In this way, we may disambiguate single or
multiword expressions against WordNet 3.0.

5 Method

In order to evaluate the complexity of a word, we
modelled each word as a feature vector. Then, we
used such word representation to enable the training
and evaluation of distinct binary classification algo-
rithms tailored to determine whether a word is com-
plex or not. To this end, we relied on the Weka ma-
chine learning framework (Witten and Frank, 2000).
We evaluated the performance of four classification
algorithms: Support Vector Machine (with linear
kernel), Naive Bayes, Logistic Regression and Ran-
dom Forest. For each algorithm, we experimented
the effectiveness of the following two training ap-
proaches:

e Simple: in which complex and non complex
word training instances have the same rele-
vance (weight);

o Weighted: in which we weighted each non
complex word with weight 1 and each com-
plex word with a weight ranging from 1 to 20
with respect to the number of human annotators
(over 20) that evaluated the word as complex.

In the remainder of this Section we describe the
set of word features we used, and motivate their rel-
evance with respect to the characterization of com-
plex words. When presenting word features, we
group subsets of related features in the same subsec-
tion (Shallow features, Dependency Tree features,
etc.). It is important to note that some of the word
features presented are computed by considering, be-
sides the target word, also context words in a [—3, 3]
window, where position 0 refers to the target word.
If the context word at a specific position cannot be
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determined, the value of the related feature is set to
undefined.

5.1 Shallow Features

We exploited the following set of shallow word fea-
tures:

e Word length (CharNumber): the length of the
target word (number of characters).

e Position of the word (WordPosition): the po-
sition of the target word in the sentence. The
value of this feature is normalized in the inter-
val [0, 1] by dividing the the position of the tar-
get word in the sentence by the length of the
same sentence (number of words). The posi-
tion of the first word of a sentence is O.

e Words in sentence (NumSentenceWords): the
number of tokens in the sentence.

5.2 Dependency Tree Features

The following set of features is derived by process-
ing the dependency tree of the sentences that include
the word to evaluate:

e Word depth in the dependency tree
(DepthInTree_position - 7 features): we
considered the depth in the dependency tree of
the target word (position equal to 0), the three
previous words and the three following words.

e Parent word length (ParentCharNumber): the
length (number of characters) of the parent of
the current (target) word in the dependency
tree.

5.3 Corpus-based Features

Word frequency data derived from the British Na-
tional Corpus and the 2014 English Wikipedia was
used to compute the following set of features:

e British National Corpus frequency
(BNCFrequency_position - 7 features):
we considered the BNC frequency! of the
target word lemma (position equal to 0), the
three previous word lemmas and the three
following word lemmas.

"http:/fucrel.lancs.ac.uk/bncfreq/lists/1 1 _all_fullalpha.txt.Z



e English Wikipedia frequency (ENwikiFre-
quency_position - 7 features): we considered
the 2014 English Wikipedia frequency of the
target word (position equal to 0), the three pre-
vious words and the three following words.
Word frequencies were computed over a tok-
enized and lower-cased version of the English
Wikipedia.

e Simple word list (Dale_Chall): a binary fea-
ture to point out the presence of the target word
in the Dale & Chall list.

5.4 WordNet features

We used WordNet 3.0 to compute the following
features. Given a target word, we refer as rarget-
word-synsets the set of synsets that have the same
POS of the target word and include the target word
among their lexicalizations (all the senses of the tar-
get word). Note that this set of features is computed
without relying on Word Sense Disambiguation.

e Number of Synsets (WNSynsetN): the number
of synsets in target-word-synsets (i.e. number
of senses of the target word).

e Number of Senses (WNSenseN): the sum of
the number of word senses (i.e. the number of
lexicalizations) of each target-word-synset.

e Depth in the hypernym tree (WNDepth): the
average depth in the WordNet hypernym hier-
archy among all the target-word-synsets.

e Number of Lemmas (WNLemma): the aver-
age number of synset lexicalizations among all
the rarget-word-synsets.

e Gloss length (WNGloss): the average length
of synset Glosses among all the target-word-
synsets, in terms of number of tokens.

e Number of relations (WNRelation): the aver-
age number of semantic relations among all the
target-word-synsets.

e Number of Distinct POSs (WNDistinctPOS):
the number of distinct POS represented by at
least one target-word-synset.
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e Part of Speech (WN_POS - 4 features): for
each WordNet POS (POS equal to Noun, Verb,
Adjective and Adverb) we counted the num-
ber of synsets with that POS among the rarget-
word-synsets, thus generating four features.

5.5 WordNet and corpus frequency features

The following set of features was computed by com-
bining WordNet data, the word frequencies of the
British National Corpus (BNC) and the results of the
UKB WordNet-based Word Sense Disambiguation
algorithm applied to the sentences where complex
words appear. Thanks to the UKB algorithm, we
identify the WordNet 3.0 synset that characterizes
the sense of each target word (WSD-synset). Besides
the target word, each WSD-synset usually has other
lexicalizations, i.e. other synonyms. We retrieve
the BNC frequency of all the lexicalizations of the
target-word-WSD-synset and compute the following
features:

e Percentage of lexicalizations with higher
/ lower frequency than target word
(LexicHigher/LowerFreqWSD - 2 features):
the percentage of the lexicalizations of the
WSD-synset with a BNC frequency higher /
lower than the target word BNC frequency.

e Ratio of total lexicalizations’ frequencies

related to lexicalizations with higher
/ lower frequency than target word
(LexicHigher/LowerSumFreqWSD - 2

features): the ratio between the sum of BNC
frequencies of the lexicalizations of the WSD-
synset with a frequency higher / lower than the
target word frequency and the sum of BNC
frequencies of all the lexicalizations of the
WSD-synset.

We also computed the previous set of 4 fea-
tures without relying on the results of the UKB
Word Sense Disambiguation algorithm: we consid-
ered for each target word all the lexicalizations of
all the synsets that represent possible senses and
have the same POS of the same target word. Sim-
ilarly to the UKB based features, these features
are referred to as: LexicHigher/LowerFreqALL and
LexicHigher/LowerSumFreqALL.



6 Experiment and results

In order to identify the best approach to classify
words as complex or not, we compared four clas-
sifiers by training on both the Simple and Weighted
datasets. We evaluated the classification perfor-
mance by means of a 10-fold cross-validation. Re-
sults are summarized in Table 1.

Classifier Dataset | Precision | Recall | G-Score F-Score
Random Simple 0.746 0.756 0.582 0.735 (run 1)
Forest Weighted 0.836 0.823 0.780 | 0.824 (run 2)
Support Vector | Simple 0.685 0.707 0.707 0.650
Machine Weighted 0.728 0.718 0.718 0.719
Logistic Simple 0.667 0.697 0.476 0.659
Regression Weighted 0.733 0.734 0.745 0.733
Naive Simple 0.654 0.613 0.594 0.626
Bayes Weighted 0.706 0.708 0.750 0.705

Table 1: Comparison of the performance of four complex word
binary classifiers by a 10-fold cross-validation over the Task 11

training dataset.

Table 1 shows that the best performance in terms
of F-Score was achieved by the Random Forest clas-
sifier for both approaches (Simple and Weighted).
As a consequence, the two systems we submitted
to Task 11 relied on a Random Forest model re-
spectively trained on Simple (unweighted, run 1)
and Weighted (run 2) instances. Our run based on
Weighted instances performed quite well, ranking
as the third best system in Task 11 with a G-Score
of 0.772, where the G-Score of the best perform-
ing system is 0.774. With respect to F-Score our
best performing run was the one based on Simple in-
stances that ranked as sixth.

In Table 2 we show the top 10 features in our fea-
ture set in terms of information gain.

Info-gain Feature name
0.37865 | ENwikiFrequency_position_0
0.33303 BNCFrequency _position_0
0.18752 WNSynsetN
0.18439 WNGloss

0.14452 Dale_Chall
0.13596 LemmaLowerFreqALL
0.10567 WNdepth

0.10558 | LemmalLowerSumFreqALL
0.08037 WNDistinctPOS
0.06244 WNSenseN

Table 2: Top 10 features with respect to information gain.
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We can see that the frequencies of the word to
evaluate in the two corpora we considered (English
Wikipedia and British National Corpus) constitute
the two most informative features. Five of the top 10
features are computed by relying on WordNet, with-
out performing Word Sense Disambiguation: among
them we can find the number of synsets (senses)
of the word to evaluate (WNSynsetN), the average
length of the glosses of these synsets (WNGloss)
and the average depth of these synsets in the hy-
pernym tree (WNDepth). Other useful indicators
of word complexity are the presence of the word in
the simple words list of Dale & Chall and the set
of lexicalizations (of the synsets associated to the
word) characterized by a frequency in the British
National Corpus lower than the frequency of the
word to evaluate (LexicLowerFreqALL and Lexi-
cLowerSumFreqALL).

In Table 3 we show the performance of the four
classification algorithms we considered by training
them on the whole training dataset (with Simple or
Weighted instances) and testing them on the testing
dataset. The best performance in terms of both F-
Score and G-Score are achieved by the two Ran-
dom Forest classifiers that were trained respectively
on Simple (unweighted) and Weighted instances. In
general, when we train the classifiers on Weighted
instances in place of Simple ones, on the one hand
both recall and accuracy improve, thus resulting in
a higher G-Score, on the other hand the precision
decreases, thus resulting in a lower F-Score.

Classifier Dataset | Precision | Recall | G-Score | F-Score

Random Simple 0.186 0.673 0.750 0.292 +
Forest Weighted 0.164 0.736 | 0.772 * 0.268
Support Vector | Simple 0.132 0.406 0.549 0.199
Machine Weighted 0.103 0.720 0.706 0.180
Logistic Simple 0.131 0.454 0.588 0.203
Regression Weighted 0.086 0.804 0.682 0.156
Naive Simple 0.083 0.769 0.670 0.151
Bayes Weighted 0.079 0.787 0.656 0.144

Table 3: Comparison of the performance of four complex word
binary classifiers. Each classifier is trained on the whole train-
ing dataset and tested on the annotated festing dataset. The
asterisk symbol (*) points out the best performing classifier by
G-Score while the plus symbol (+) the best performing classi-
fier by F-Score.



7 Conclusions

In this paper, we described our participation to
SemEval-2016 Task 11 concerning Complex Word
Identification. We presented and evaluated our sys-
tem based on both the characterization of words by
means of contextual, lexical and semantic features
and the exploitation of a Random Forest classifier to
decide if a word is complex or not.

As future work we are planning to expand the fea-
ture set that we consider to characterize words by
relying on new corpora and lexical resources. More-
over, we would like to explore complementary ap-
proaches to take advantage of distributional repre-
sentations of words (i.e. word embeddings) or other
language models to determine words complexity.
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