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Abstract

Community question answering platforms
need to automatically rank answers and ques-
tions with respect to a given question. In this
paper, we present the approaches for the An-
swer Selection and Question Retrieval tasks
of SemEval-2016 (task 3). We develop a
bag-of-vectors approach with various vector-
and text-based features, and different neu-
ral network approaches including CNNs and
LSTMs to capture the semantic similarity be-
tween questions and answers for ranking pur-
pose. Our evaluation demonstrates that our
approaches significantly outperform the base-
lines.

1 Introduction

Community Question Answering (cQA) forums are
rapidly growing, resulting in an urgent need to
automatically search for relevant answers among
many responses provided for a given question (An-
swer Selection), and search for relevant questions
to reuse their existing answers (Question Retrieval).
In this paper, we aim to address the SemEval 2016
tasks (Nakov et al., 2016) that are designed for An-
swer Selection (AS) and Question Retrieval (QR).
These tasks are briefly described as follows:

A Question-Comment Similarity: given a question
and its first 10 comments in the question thread,
rerank these 10 comments according to their rel-
evance with respect to the question.

B Question-Question Similarity: given a new
question (named original question) and the set of

the first 10 related questions retrieved by a search
engine, rerank the related questions according to
their similarity regarding the original question.

C Question-External Comment Similarity: given
a new question (original question) and the set
of the first 10 related questions retrieved by a
search engine, each associated with its first 10
comments appearing in its thread, rerank the 100
comments (10 questions x 10 comments) accord-
ing to the new question.

D Question-External Question-Comment Pair
Similarity: Given a new question and a set of 30
related questions retrieved by a search engine,
each associated with one correct answer, rerank
the 30 question-comment pairs according to their
relevance with respect to the original question.

Task B is considered as QR and the others as AS
problems. The first three tasks are evaluated on an
English dataset and the fourth on an Arabic dataset.
Several factors make all these tasks more challeng-
ing. First, cQA forums contain open-domain and
non-factoid questions and answers, resulting in high
variance Q&A quality (Màrquez et al., 2015). A
second factor is that the Q&A are long and their
length may vary from several words to several hun-
dred words. The third factor concerns the relatively
close relation between some annotation labels; the
comments in the tasks A and C are labeled as Rele-
vant, Potential and Irrelevant, and the Relevant com-
ments need to be ranked above the Potential and Ir-
relevant comments. From a natural language pro-
cessing perspective, it is difficult to define a clear
distinction between the relevant and potential labels.
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To address these tasks, we first present a bag-of-
vectors (BOV) approach in which various vector-
and text-based features are designed and passed
through a linear SVM classifier to compute the de-
gree of relatedness between the Q&As. Then, we
present different NN-based approaches including
CNNs and LSTMs to compute the representations of
the Q&As. We evaluate our models on the cQA cor-
pus provided by SemEval. The results demonstrate
that our approaches outperform the baselines.

2 Method

Given a question q, a list of answers A for AS, and
a list of questions Q for QR, we aim to rank the
lists A and Q with respect to q. To address these
problems, we present a bag-of-vectors (BOV) ap-
proach to compute various vector- and text-based
features for a classifier. Furthermore, we present
NN-based approaches (LSTM with attention, CNN
and RCNN) for learning the vector representations
of the questions and answers to be used for captur-
ing their semantic similarity. The degree of similar-
ity between the Q&A is used for their ranking.

2.1 Bag-of-Vectors (BOV)

Previous work presented a BOV approach to ad-
dress the classification tasks in cQA (Belinkov et al.,
2015). In this paper, we aim to extend the previous
approach for the ranking tasks by updating the fea-
ture sets and developing new models. The features
are categorized into text, vector and meta-data based
features that are briefly explained below (in the ex-
periments section below we detail the features cho-
sen for each task). Then, we explain our approach to
shorten the length of Q&As in the Arabic data.

Text-based features These features are mainly
computed using text similarity metrics, word clus-
tering and topic modeling. As the first set of
text-based features, we use various text similar-
ity metrics that measure string overlap between
Q&As: Longest Common Substring (Gusfield,
1997), Longest Common Subsequence (Allison and
Dix, 1986), Longest Common Subsequence Norm,
Greedy String Tiling (Wise, 1996), Monge Elkan
Second String (Monge and Elkan, 1997), Jaro Sec-
ond String (Jaro, 1989), Jaccard coefficient (Lyon
et al., 2004) and Containment measures (Broder,

1997). These metrics are explained in (Belinkov et
al., 2015).

Another set of text-based features are computed
using word clustering that has been useful in many
supervised NLP approaches. We use Brown cluster-
ing (Brown et al., 1992; Liang, 2005) that creates
word clusters such that they are hierarchical in a bi-
nary tree. In the tree, each word is assigned to a
bitstring depending on its tree path, and the prefixes
of the bitstring are the ancestor clusters used as addi-
tional features. We use an implementation of Brown
clustering,1 that is designed as an HMM-based al-
gorithm which partitions words into a base set of N
(=500) clusters. Given a question or an answer as
a document, its clusters are determined based on its
word clusters. This captures the global clusters.

Topic modeling approaches can also be used to
automatically identify topics of documents. We use
Non-negative Matrix Factorization (NMF) for topic
modeling. A document-term matrix is constructed
with TF-IDF weights. This matrix is factored into
a term-topic and a topic-document matrix. The
N (=100) topics are derived from the contents of
the documents, and the topic-document matrix de-
scribes topics of related documents. We use each
column of the topic-document matrix as features for
each individual document. The entire train, devel-
opment and test datasets provided by SemEval 2015
and 2016 are employed to compute the word cluster-
ing and topic modeling features.

Vector-based features The concatenation of the
normalized Q&A representations is used as vector-
based features for a (q, a) pair. The question or an-
swer representation is obtained with the average of
its word representations computed from Word2Vec
vectors (Mikolov et al., 2013a; Mikolov et al.,
2013b; Mikolov et al., 2013c). For English word
vectors we use the GoogleNews vectors dataset.2

For Arabic word vectors we use Word2Vec to train
100-dimensional vectors on either the general do-
main Arabic Gigaword (Linguistic Data Consor-
tium, 2011) or the domain-specific raw data pro-
vided with the task. We select the word vector set
based on the performance of the development set.

1https://github.com/percyliang/
brown-cluster.

2https://code.google.com/p/word2vec.
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Furthermore, for the Arabic the pair of sentence vec-
tors in the question and answer with the highest co-
sine similarity is used as features.

We use a zero vector if the question or answer
contains only out-of-vocabulary words. To make it
easier for the classifier to ignore the vectors in these
cases, we design two boolean features to identify
whether the question and answer are zero vectors.

Metadata-based features We use a metadata-
based feature that identifies whether the user who
posted the question is the same user who wrote the
answer. This feature is useful to identify irrelevant
dialogue answers, and used for the tasks A and C.

Shrinking the sentence length Some of the ques-
tions and answers in the community forum are very
long. In fact, in the Arabic dataset questions and an-
swers have an average length of 50 and 120 words,
respectively. Therefore, we preprocess the texts
using TextRank (Mihalcea and Tarau, 2004), a
graph-based keyword extraction algorithm, for find-
ing the most meaningful words within every thread.
Once the meaningful words are found, we filter all
other words from each thread instance, and build
the subsequent feature representation based on the
shortened texts.

Given a document, TextRank builds a graph
representation, where nodes stand for word types,
connected by undirected links representing co-
occurrence within a window of size N . An impor-
tance weight is then calculated for each node, using
an iterative formula introduced by PageRank (Brin
and Page, 1998). We use our implementation of
TextRank, in which we select a certain percent-
age of the words, defined as P , sorted top-down by
importance weight, as the final keywords.

We treat each thread, including all its question-
answer pairs, as an individual document for
TextRank. We preprocess each document with
MADA 3.1 (Habash et al., 2009), a context-sensitive
lemmatizer, for finding word lemmas and part-of-
speech tags. Finally, our TextRank graphs include
only lemmas of content words, Latin-script words
and words with no lemmas. Content words in this
sense are defined as nouns, verbs, adjectives and
adverbs. All other TextRank parameters are as-
signed with values according to (Mihalcea and Ta-
rau, 2004).

Figure 1: The Architecture of the LSTM with attention for cQA

2.2 Long Short-Term Memory (LSTM)
Networks with Attention

LSTMs have shown great success in many differ-
ent fields, such as textual entailment (Rocktäschel
et al., 2015), language modeling (Sundermeyer et
al., 2012), and acoustic modeling (Graves et al.,
2013). The recurrent structure as well as the abil-
ity to store long-term information make LSTMs suit-
able for encoding sequences of variable length into
fixed-length representations.

However, for very long sequences, such as the
comments in cQA tasks (~hundreds of words), an
LSTM may still fail to compress all information
into this representation. Recently, a neural attention
model (Bahdanau et al., 2014) has been proposed to
alleviate this issue by enabling the network to attend
to all past outputs. The attention mechanism along
with an LSTM is ideal for cQA tasks.

Following (Mohtarami et al., 2016), as illustrated
in Figure 1, we apply two LSTMs to encode (q, q′)
or (q, a) respectively. The first LSTM reads one ob-
ject, and passes information through hidden units to
the second LSTM. The second LSTM then reads the
other object and generates its representation biased
by the first object after finishing reading.

By augmenting an attention mechanism to the en-
coder, we allow the second LSTM to attend to the
sequence of output vectors from the first LSTM,
and hence generate a weighted representation of
the first object according to both objects. Let hN
be the last output of the second LSTM and M =
[h1, h2, · · · , hL] be the sequence of output vectors
of the first object. The weighted representation of
the first object is

h′ =
L∑

i=1

αihi (1)
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Embedding init or random, fix or update
Two LSTM shared or not

#cells for LSTM 64, 128, 256
# nodes for MLP 128, 256

Optimizer AdaGrad, AdaDelta, SGD
learning rate 0.001,0.01,0.1
Regularizer Dropout, L2 regularization
Dropout rate 0.0, 0.2, 0.3, 0.4, 0.5

L2 0, 0.001, 0.0001, 0.00001

Table 1: Hyper-parameters of the LSTM model. The bold value

is the selected parameter.

The weight is computed by

αi =
exp(a(hi, hN ))

∑L
j=1 exp(a(hj , hN ))

(2)

where a() is the importance model that produces a
higher score for (hi, hN ) if hi is useful for determin-
ing the object pair’s relationship. We parametrize
this model using a feed-forward neural network.

To classify the relationship of this pair, another
feed-forward neural network is built on top of the
LSTMs that takes the representations of both ob-
jects, hN and h′, as input. Note that in our frame-
work, we can use the augmented features f to en-
hance the classifier. In this case, the final input to
the classifier will become hN , h′, and f . The de-
tails of this model are explained in (Mohtarami et
al., 2016).

Our system is based on Theano (Bastien et al.,
2012; Bergstra et al., 2010). Table 1 gives a list of
hyperparameters we tried. As suggested by (Greff et
al., 2015), the hyperparameters for an LSTM can be
tuned independently. We tune each parameter sepa-
rately on a dev set and pick the best one.

2.3 Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNNs) are use-
ful in many NLP tasks, such as language model-
ing (Kalchbrenner et al., 2014), semantic role la-
beling (Collobert and Weston, 2008) and seman-
tic parsing (Yih et al., 2014). Our reason for us-
ing a CNN for cQA is that it can capture both fea-
tures of n-grams and long-range dependencies (Yu
et al., 2014), and can extract discriminative word
sequences that are common in the training in-
stances (Severyn and Moschitti, 2015). These traits
make CNNs useful for dealing with long questions.

Following (Mohtarami et al., 2016), as illustrated
in Figure 2, we employ a CNN-based model to first

Question 

Answer/Question 

Softmax 

Hidden  
Layer 

Pooling Layer Convolutional Layer 

Augmented 
Features 

CNN	
  

CNN	
  

Figure 2: The Architecture of the CNN for cQA

compute a relatedness score for each pair, (q, a) or
(q, q), and then rank the lists based on the resulting
scores. In the model, for a given pair, the embed-
ding vectors of q and a are considered as input. The
CNN convolution and pooling layers then generate
the convolutional vector representations. These vec-
tors are concatenated with other additional feature
vectors and used as input to a fully connected Multi-
Layer Perceptron (MLP) whose softmax layer gen-
erates a probability score P (y|q, a) over the labels
y ∈ {0, 1}, where 1 means relevant, and 0 means
irrelevant. The hyperparameter configuration of the
CNN model is shown in Table 3, and the details of
this model are explained in (Mohtarami et al., 2016).

2.4 Recurrent Convolutional Neural Network
(RCNN)

For task B, we also apply the recurrent convolutional
neural network model, which has been recently pro-
posed and successfully applied to a similar ques-
tion retrieval problem (Lei et al., 2015). Unlike
traditional CNNs which only extract local n-gram
features, RCNNs extract and aggregate all possible
n-grams within the input sequence, including ones
that are not consecutive. Similar to LSTMs and
Gated Recurrent Units (GRUs), which have inter-
nal “memory” states, RCNNs maintain aggregated
vectors to store the weighted average of n-gram fea-
tures. These vectors are updated in a recurrent fash-
ion when the input tokens are successively read into
the network.

Following the set-up in (Lei et al., 2015), we
take the last state vector as the final representation
of the question. The parameters of RCNN encoder
are trained in a max-margin fashion, maximizing the
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Embedding Glove vector, fixed
Hidden dimension 200

Filter width 2
Optimizer Adam

Learning rate 0.01
Dropout rate 0.1

L2 0.00001

Table 2: The hyper-parameters of RCNN model.

Embedding word2vec, fixed
Hidden dimension 300

Filter width 5
Optimizer AdaDelta

Learning rate 0.95
Dropout rate 0.5

L2 0.00001

Table 3: The hyper-parameters of CNN model.

(cosine) similarity difference between positive ques-
tion pairs and negative pairs. The hyperparameter
configuration of the model is shown in Table 2.

3 Experimental Results

We evaluate our approaches on all the cQA tasks.
We use the cQA datasets provided by SemEval
2016. The English data were collected from the
Qatar Living forum.3 and the Arabic data were col-
lected from medical forums. Table 4 provides statis-
tics for the datasets. As evaluation metrics, we use
F1-score for a global assessment of the approaches
in addition to the following ranking metrics: Mean
Average Precision (MAP), Average Recall (AveRec)
and Mean Reciprocal Rank (MRR). For the MAP,
we use the average of MAP@1 to MAP@10.

Baselines For a baseline, we use the Information
Retrieval (IR) ranking score that is computed as fol-
lows: given a q, the top 100 threads retrieved by
Google from the Qatar Living forum are considered
and the order of each thread is used as its IR rank-
ing score. As another baseline, we use a system that
randomly ranks a given list of Q or A.

Question-comment similarity The results for this
task are shown in Table 5(a). The first two rows
are the IR and random baseline results, and the
next two rows are the best two performances among
all SemEval submissions for this task. The other
three rows are the results of our approaches and re-
spectively submitted to SemEval as primary, con-

3http://www.qatarliving.com/forum.

A B C D
Original questions - 317 317 1,281
Related questions 6,398 3,169 3,169 37,795
Comments 40,288 - 31,690 37,795

Table 4: Statistics of the dataset through the tasks.

trastive1 and contrastive2 results. As shown in
the table, our results are significantly higher than
the baselines and comparable with the best results
over all performance metrics, and there is no sig-
nificant difference between the results of our ap-
proaches for this task. We use various combinations
of our BOV, LSTM and CNN approaches, then se-
lect the best ones with respect to the development
set. The combination of the approaches is computed
by 1/(R1 + R2 + ...+ Ri) where Ri is the ranking
of the ith approach.

In this task, the BOV includes all the features ex-
cept for the NMF features, and we employ the order
of the answers in their threads as augmented features
for our NN-based approaches. The structure of the
threads (e.g., answer order) can help to extract rele-
vant answers (Barrón-Cedeño et al., 2015).

Question-question similarity Table 5(b) shows
the results for this task. The first two rows are the
results for IR and random baselines, and the next
two are the best two performances of SemEval. The
other three results are related to our approaches and
respectively submitted to SemEval as primary, con-
trastive1 and contrastive2 results. The table shows
that our results are significantly better than the base-
lines. While there is no significant difference be-
tween our contrastive1 and contrastive2 results with
the best result, these results are higher than the sec-
ond best SemEval result on MAP, and the highest
result is obtained with our primary result on accu-
racy. With respect to our results, the combination of
BOV, LSTM and RCNN achieves the highest result
on MAP and the combination of BOV and RCNN is
the best on F1.

In this task, the combination of the approaches
is computed using a linear SVM with the feature
vector R1, R2, ..., Ri where R is the ranking of the
ith approach. Furthermore, in this experiment, the
BOV includes all the features except the word clus-
tering features, and we employ the ranking order of
the IR as augmented features for our NN-based ap-
proaches.
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Task A (a)
Method MAP AveRec MRR P R F1 Acc
IR 59.53 72.60 67.83 - - - -
Random 52.80 66.52 58.71 45.26 40.56 74.57 52.55
Kelp (first) 79.19 88.82 86.42 76.96 55.30 64.36 75.11
ConvKN (second) 77.66 88.05 84.93 75.56 58.84 66.16 75.54
BOV+LSTM+CNN (primary) 76.33 87.30 82.99 60.36 67.72 63.83 68.81
BOV+CNN (contrastive1) 76.46 87.47 83.27 60.09 69.68 64.53 68.87
BOV+LSTM (contrastive2) 76.71 87.17 84.38 59.45 67.95 63.41 68.13

Tast B (b)
Method MAP AveRec MRR P R F1 Acc
IR 74.75 88.30 83.79 - - - -
Random 46.98 67.92 50.96 40.43 32.58 73.82 45.20
UH-PRHLT (first) 76.70 90.31 83.02 63.53 69.53 66.39 76.57
ConvKN (second) 76.02 90.70 84.64 68.58 66.52 67.54 78.71
BOV+RCNN (primary) 75.55 90.65 84.64 76.33 55.36 64.18 79.43
BOV+LSTM+RCNN (contrastive1) 76.17 90.55 85.48 74.39 52.36 61.46 78.14
RCNN (contrastive2) 76.09 90.14 84.21 77.21 45.06 56.91 77.29

Task C (c)
Method MAP AveRec MRR P R F1 Acc
IR 40.36 45.97 45.83 - - - -
Random 15.01 11.44 15.19 29.59 9.40 75.69 16.73
SUper-team (first) 55.41 60.66 61.48 18.03 63.15 28.05 69.73
Kelp (second) 52.95 59.27 59.23 33.63 64.53 44.21 84.79
LSTM+BOV+IR (primary) 49.09 56.04 55.98 47.85 13.61 21.19 90.54
BOV+IR+LSTM+CNN (contrastive1) 46.48 53.31 52.53 16.24 85.93 27.32 57.29
BOV+CNN+IR (contrastive2) 46.39 52.83 51.17 16.18 85.63 27.22 57.23

Tast D (d)
Method MAP AveRec MRR P R F1 Acc
IR 28.88 28.71 30.93 - - - -
Random 29.79 31.00 33.71 19.53 20.66 20.08 68.35
ConvKN (second) 45.50 50.13 52.55 28.55 64.53 39.58 62.10
RDI team (third) 43.80 47.45 49.21 19.24 100.00 32.27 19.24
BOV (primary; first) 45.83 51.01 53.66 34.45 52.33 41.55 71.67
BOV (contrastive1) 44.94 49.72 51.58 62.96 2.40 4.62 80.95
BOV (contrastive2) 42.95 47.61 49.55 27.29 74.40 39.84 56.76

Table 5: Results on test data for answer selection and question retrieval tasks

Question-external comment similarity The re-
sults for this task are shown in Table 5(c). The first
two rows are the IR and random baseline results and
the next two rows are the best two SemEval results.
The other three rows are our results that respectively
are primary, contrastive1 and contrastive2 results.
As shown in the table, our results are significantly
higher than the baselines but lower than the best Se-
mEval results. We use a similar combination ap-
proach to task A for our contrastive results and the
primary is computed using the BOV and IR features
as the augmented features for LSTM. In this task, the
BOV includes all the features except for the word
clustering and NMF features, and we employ both
the ranking order of the IR and answer order as aug-
mented features for our NN-based models.

Question-external question-comment pair simi-
larity This task is only available for Arabic. Our
feature set for this task is somewhat simplified com-
pared to the English tasks: we only use our BOV
approach with simple text- and vector-based fea-
tures. Similarities are computed only on word- and
sentence-level, and not on chunk-level as in (Be-
linkov et al., 2015). We do not use word cluster-
ing or topic modeling features and we note that the
Arabic dataset has no associated metadata. Further-
more, in this dataset every original question has a
number of related question-answer pairs. To fully
exploit this information we compute two sets of fea-
tures: one between the original and related ques-
tions, and one between the original question and the
related answer. We then concatenate the two sets as
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the final feature representation to the classifier.
Our primary submission is a uniform combination

of scores from four different settings of shrinking the
length: (i) no shrinking (all words are kept as is);4

(ii) only keeping content lemmas (iii) only content
lemmas and TextRank with N = 3, P = 5; (iv)
only content lemmas and TextRank with N = 4,
P = 1. We also submit (i) as contrastive1 and (iii)
as contrastive2. These settings were chosen based
on the performance on the development set.

As Table 5(d) shows, our primary submission
ranks first on all ranking metrics and on F1. Our
contrastive submissions are also very competitive.

Finally, we experimented with two sets of word
vectors, either trained from the general domain Gi-
gaword corpus (∼1B words) or the domain-specific
unsupervised data provided with the task (∼26M
words). Despite the very different sizes of the raw
corpora, we found mixed results: the general do-
main vectors were useful with no shrinking (i) while
the domain-specific ones were more beneficial with
shrinking (ii-iv); we used these settings for the sub-
mission. Using word vectors trained on a combined
corpus from both raw datasets did not result in addi-
tional improvement.

4 Conclusion

We developed bag-of-vectors and neural network
approaches, and demonstrated their effectiveness on
the cQA tasks for ranking a list of questions or an-
swers for a given question. We evaluated our ap-
proaches on the SemEval-2016 corpus and our re-
sults significantly outperform the baselines. In addi-
tion, our results are comparable to the result of the
best submission to SemEval-2016 for English and
achieved the first place for Arabic.
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