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Abstract

This paper describes iUBC, a neural network
based approach that achieves competitive re-
sults on the interpretable STS task (iSTS
2016). Actually, it achieves top performance
in one of the three datasets. iUBC makes use
of a jointly trained classifier and regressor, and
both models work on top of a recurrent neural
network. Through the paper we provide de-
tailed description of the approach, as well as
the results obtained in iSTS 2015 test, iSTS
2016 training and iSTS 2016 test.

1 Introduction

Semantic Textual Similarity (STS) aims to catch the
degree of equivalence between a pair of text nuggets.
Interpretable STS (iSTS) is beyond STS in that it
adds fine-grained information when evaluating the
equivalence between text snippets. This explanatory
layer is achieved by aligning text segments pertain-
ing to one sentence with the segments pertaining to
the second sentence, and, for each alignment, indi-
cating a relation label and a similarity score.

In sum, alignments consist of a similarity score
and a relation label that are defined as follows. On
the one hand, the relation label has to be chosen from
a set of categorical values (equivalence, opposition,
specialization, similarity and other kind of relation).
On the other hand, the similarity score has to be a
real number bounded by (0,5]. Apart from this, there
is an extra label to handle not aligned text segments.

The present paper describes iUBC and its par-
ticipation in the International Workshop on Seman-
tic Evaluation (SemEval-2016) task 2: Interpretable

Semantic Textual Similarity. To check the task in
full detail please refer to Agirre et al. (2016). Note
that some of the authors participated in the organi-
zation of the task. Organizers prevented developers
from access to the test dataset, and only allowed to
access the same data as the rest of participants.

The paper is organized as follows. Section 2 de-
scribes iUBC’s components, section 3 describes de-
velopment performance and run configurations, sec-
tion 4 shows the results obtained in the iSTS 2016
task, and, finally, section 5 mentions the conclusions
and future work directions.

2 System Description

iUBC is composed of three components. The first
component, Input handling and chunking (section
2.1), is responsible for reading the input and iden-
tifying segments over sentences; the second compo-
nent, Alignment (section 2.2), takes care of aligning
segments; and, finally, the third component, Joint
classification and scoring (section 2.3), handles the
assignment of similarity scores and relation labels.
The main contribution of this architecture resides in
the third component, in which a classifier and a re-
gressor have been trained jointly on top of a recur-
rent artificial neural network (ANN).

2.1 Input handling and chunking

The iSTS task offers two different scenarios as re-
gards the input: the scenario known as System
chunks (syschunks), where participant systems are
responsible for identifying the segments contained
in the raw sentence pairs; and the Gold chunks sce-
nario (goldchunks), where participants are provided
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Figure 1: Joint model diagram. In the forward propagation

(normal arrow) left and right segments are processed by a re-

current ANN producing as output a d-dimensional vector for

each input segment. Features computed out of these vectors

are then fed to both a regressor and a classifier that produce the

similarity score and the relation label. In the backward propaga-

tion (stripped arrow) weights are adjusted in the recurrent ANN

combining the gradients that propagate from the above models.

with gold standard segment marks over raw sentence
pairs. The current component is only used in the
syschunks scenario.

To identify and segment raw input sentences we
use python’s NLTK library (Bird, 2006) and the ixa-
pipes-chunker (Agerri et al., 2014). Once the chunks
are marked we use regular expressions to tune them
according to the task’s chunk definition. We de-
veloped four rules to optimize how conjunctions,
punctuations and prepositions are handled. These
rules aim to merge consequent chunks to form new
chunks1.

The output of the component are the same sen-
tence pairs as the ones provided as input, but incor-
porating chunk marks to denote the start and end of
segments.

1We found significant improvement if prepositional phrases
followed by a nominal phrase are unified as a single chunk. The
other three rules unify nominal phrases separated by punctua-
tions, conjunctions, or a combination of them. The four rules
are coded as regular expressions in Python.

2.2 Alignment

The alignment component focuses on making opti-
mal segment connections for each sentence pair. The
algorithm is as follows.

To begin with, the module constructs a token-
token matrix in which each element (i,j) determines
that there exists a connection between token i and
token j2. The token-token matrix is populated using
the weighted sum of the following metrics: lower-
cased token overlap, stemmed or lemmatized token
overlap, cosine similarity between Mikolov’s pre-
trained word vectors (Mikolov et al., 2013) and the
alignment prediction provided by the monolingual
word aligner described in Sultan et al. (2014).

Once the token-token matrix is built, the align-
ment component makes use of segment regions to
group individual tokens. The strength of each seg-
ment connection is proportional to the weights of the
interconnected tokens. By carrying out this oper-
ation over all segments in the pair the module ob-
tains the chunk-chunk matrix3. Once the chunk-
chunk matrix has been computed, the last step is
to use the Hungarian-Munkres algorithm (Clapper,
2009) to discover the segments (x,y) that maximize
the connection weights.

The alignment is done as follows: the segments
that maximize the alignment strength are taken as
alignment main nodes. Once the process is finished,
the segments that are connected with lower weights
to either one or the other of the main nodes are incor-
porated as satellite nodes. No many-to-many align-
ments are produced as we considered further anal-
ysis is necessary in order to obtain significant im-
provement.

2.3 Joint classification and scoring

iUBC uses a classification model and a regressor to
predict the relation label and the similarity score for
aligned segments.

The main picture of this component can be de-
scribed as a two layer architecture, in which, a

2Token i being a token from the first sentence and token
j being a token from the second sentence. Thus, the token-
token matrix has a dimensionality of (#sentence1tokens x #sen-
tence2tokens).

3This operation can be seen as pooling the token-token ma-
trix by collapsing weights. The chunk-chunk matrix has a di-
mensionality of (#sentence1segments x #sentence2segments).
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classifier and a regressor work on top of a recur-
rent ANN. While the models on the top layer are
trained to produce scores and labels, the underlying
recurrent net tries to capture the semantic represen-
tation of input segments and feed it upwards.

Both models on the top layer are trained in a su-
pervised manner at the same time, and the delta error
messages computed on them are used to train the net
of the bottom layer. That is, the gradient propagat-
ing from both models on the top layer is used to
train the weights of the ANN (Figure 1). A simi-
lar architecture with one top layer propagating gra-
dients to an ANN has previously been used in Tai et
al. (2015), which we use as motivation for our work.

The whole model works as follows: the ANN
from the bottom layer processes segment words one
at a time until there are no more words left. At each
time step the net updates its internal memory state
so that it keeps on capturing the semantic represen-
tation of the segment. Once the two segments have
been processed the net outputs both segment repre-
sentation d-dimensional vectors. These vectors are
used to compute features for the models in the top
layer.

Element wise distance (| ~S1 d − ~S2
d|) and angle

( ~S1
d∗ ~S2 d

) are computed as features, as proposed in
Tai et al. (2015). The distance and angle concatena-
tion yields a 2 * d-dimensional vector. This resulting
vector is used as input in top layer models.

As regards the top layer models, feedforward neu-
ral networks are used for both. All the parameters of
the models are summarized in Table 1. The scientific
computing framework Torch has been used to build
the whole component (Collobert et al., 2011). Note
that this component doesn’t use any type of lexical-
ized or domain specific feature but Pennington et al.
(2014) word embeddings.

3 Development

Initial experiments (section 3.2) have been carried
out using the official train and test splits from iSTS
2015 (Agirrea et al., 2015). The 2016 interpretable
STS task released three train datasets: Images,
Headlines and Answer-Students. These datasets
have been used to train the models using 10-fold
cross-validation.

In Section 3.1 we describe in detail the set up of

Bottom layer ANN: RNN or LSTM
Input Glove word embeddings
Output Sentence representation
Input-dim 300
Memory-dim 150
Output-dim 150
Non linearity Sigmoid function
Learning rate 0.05
Regularization 1e-4
Top layer - Regressor
Input Distance and angle
Output Similarity score
Input-dim 2 * 150
Hidden-dim 50
Output-dim 1
Non linearity Sigmoid function
Loss function MSE criterion
Learning rate 0.05
Regularization 1e-4
Top layer - Classification model
Input Distance and angle
Output Softmax pr among labels
Input-dim 2*150
Hidden-dim 50
Output-dim 5 (OPPO is not learnt)
Non linearity Sigmoid function
Loss function Multi-Class margin loss
Learning rate 0.05
Regularization 1e-4

Table 1: All parameters used in the Joint classification and scor-

ing component.

iUBC for each run, Section 3.2 presents the results
on iSTS 2015 data, and in Section 3.3 we present the
training results from iSTS 2016.

3.1 Selection of runs

We developed three runs with the following spe-
cific settings: iUBC run1, the simplest run, uses
a 1-layer RNN trained separately on each dataset;
iUBC run2, is the same as run1 but instead of us-
ing a 1-layer RNN it employs a 1-layer LSTM;
iUBC run3, is the same as run2 but the datasets are
perturbed so they include segments that are not part
of the gold standard. To produce this perturbation or
noise we combine the gold standard alignments with
the system alignments. The aim of doing so is to in-
corporate some noise in the training data, which we
think would be useful to prevent overfitting. Both
ANN models (RNN and LSTM) are coded follow-
ing the equations of Tai et al. (2015).
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Figure 2: Cross-validation results for the Joint classification and scoring component over the iSTS 2015 training data. Figure

describes run1 (RNN) and run2 (LSTM) results on the Images dataset. Micro F-score is used to evaluate labels and Pearson

correlation coefficient is used to evaluate scores.

iSTS15 H syschunks H gschunks
F +T +S +TS F +T +S +TS

iUBC r2 0.78 0.47 0.71 0.46 0.91 0.60 0.83 0.60
iUBC r3 0.78 0.46 0.70 0.46 0.91 0.61 0.83 0.58
iUBC r1 0.78 0.46 0.68 0.45 0.91 0.57 0.81 0.55
Baseline 0.67 0.46 0.60 0.46 0.84 0.56 0.76 0.56
AVG 0.69 0.45 0.61 0.43 0.84 0.56 0.75 0.54
MAX 0.78 0.51 0.70 0.51 0.90 0.67 0.83 0.64

I syschunks I gschunks
F +T +S +TS F +T +S +TS

iUBC r3 0.85 0.56 0.78 0.54 0.90 0.61 0.74 0.59
iUBC r2 0.85 0.55 0.78 0.53 0.90 0.60 0.84 0.58
iUBC r1 0.85 0.47 0.75 0.45 0.90 0.48 0.80 0.47
Baseline 0.71 0.37 0.61 0.37 0.84 0.43 0.72 0.43
AVG 0.67 0.41 0.59 0.39 0.82 0.50 0.72 0.47
MAX 0.83 0.58 0.75 0.56 0.89 0.61 0.80 0.60

Table 2: iSTS 2015 test results in Headlines and Images on

both scenarios. Baseline, AVG and Max participants rows are

taken from iSTS 2015. F, +T, +S and +TS stand for the official

evaluation metrics F1 Alignment, F1 Type, F1 Score and F1

Type+Score.

3.2 Results on iSTS 2015 test

Results obtained using the described runs on iSTS
2015 test data are shown in Table 2. Comparing our
runs to the published results, we think they perform
competitively. According to the F evaluation met-
ric, in both datasets we obtain equal or higher re-
sults than the maximum score among participants,

moreover, our second run also obtains the highest
results on the +S evaluation metric. The +T and
+TS evaluation metrics are the ones in which our
runs don’t outperform best published results. Yet,
they are above participants average in all scenarios,
in some cases by large margin.

As regards our runs, we conclude that run2 and
run3 outperform run1, but they both perform quite
similarly. It seems that the noise added in the third
run helps very slightly in the Images dataset. We
also noticed that the hardest scenario for our runs
turns to be the Headlines syschunks, where we al-
most obtain the same results for all runs.

As the majority of the systems participating in the
iSTS 2015 task used lexicalized and task specific
features or rules, we think iUBC is rather a different
approach. It contributes to the task by being a sys-
tem that doesn’t make use of domain specific fea-
tures but word embeddings while remaining com-
petitive. We also think that results on the iSTS 2016
task will be reasonable as the training data for the
iSTS 2016 task duplicates the one of the 2015. Ac-
tually, the reduced size of the training data is a mat-
ter that worried us. Due to this, for iSTS 2016 we
decided not to divide the training data in train and
development splits but to use cross-validation.
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3.3 Results on iSTS 2016 train

Figure 2 shows cross-validation results for the Joint
classification and scoring component over the Im-
ages dataset. Due to space constraint we have only
included figures for the first and second run.

Comparing the RNN (Figure 2 bottom images)
with the LSTM (Figure 2 top images) we can ob-
serve that the LSTM is able to fit the dataset with
better results in fewer iterations. Actually, the evo-
lution over epochs for the LSTM is smoother than
the evolution of the RNN, especially for the labeling
task. It seems that the RNN needs more epochs than
the LSTM to fit the dataset.

It is also observable the high fitting of the LSTM
to the scores of the training data, which is almost
reaching the 100% correctness. Yet, this over-fitting
seems not to contribute badly towards test results,
which are noticeably higher than the RNN’s. On the
contrary, for relation labels the fitting is not that high
for neither of the networks, even the LSTM outper-
forms the RNN.

4 Results on iSTS 2016 test

Table 3 shows the results obtained by distinct
runs respectively in Headlines, Images and Answer-
Students datasets.

Overall, iUBC performs competitively being
Headlines the most difficult dataset to fit in and
Answer-Students the best. In addition, we can see
that both run2 and run3 outperform run1 by a large
margin. Actually, the results scored by run1 are not
that good as it scores below the participants’ aver-
age. The main conclusion drawn from these result
tables as regards run1 is that RNNs are not able to fit
these datasets as well as LSTMs do.

Concerning run2 and run3 we expected run3 to
outperform run2 on syschunk scenarios because of
the noise it has been trained with. Nevertheless, this
behavior can only be observed in Headlines, as in
images run2 scores better than run3 and in Answer-
Students they both score equally. The noise also
seems not to affect gschunks scenarios very badly
as in Headlines and Anser-students both runs score
equally. Even though, run3’s performance worsens
3 points in Images dataset on this scenario.

As pointed out in section 3.2 the F evaluation met-
ric and the +S evaluation metric continue to be the

iSTS16 H syschunks H gschunks
F +T +S +TS F +T +S +TS

iUBC r3 0.81 0.51 0.74 0.50 0.93 0.60 0.86 0.59
iUBC r2 0.81 0.49 0.74 0.48 0.93 0.60 0.86 0.59
iUBC r1 0.81 0.43 0.71 0.42 0.93 0.51 0.83 0.50
Baseline 0.65 0.44 0.59 0.44 0.85 0.55 0.76 0.55
AVG 0.80 0.51 0.72 0.50 0.89 0.61 0.82 0.60
MAX 0.84 0.56 0.76 0.55 0.91 0.70 0.84 0.70

I syschunks I gschunks
F +T +S +TS F +T +S +TS

iUBC r2 0.86 0.56 0.80 0.55 0.91 0.62 0.86 0.61
iUBC r3 0.86 0.52 0.80 0.52 0.91 0.59 0.85 0.58
iUBC r1 0.86 0.49 0.77 0.48 0.91 0.52 0.82 0.51
Baseline 0.71 0.40 0.63 0.40 0.86 0.48 0.75 0.48
AVG 0.82 0.54 0.76 0.52 0.87 0.58 0.80 0.57
MAX 0.85 0.63 0.79 0.61 0.90 0.69 0.84 0.67

AS syschunks AS gschunks
F +T +S +TS F +T +S +TS

iUBC r3 0.80 0.57 0.75 0.56 0.89 0.65 0.84 0.64
iUBC r2 0.80 0.57 0.75 0.56 0.89 0.65 0.84 0.64
iUBC r1 0.80 0.45 0.71 0.45 0.89 0.50 0.79 0.50
Baseline 0.62 0.44 0.57 0.44 0.82 0.56 0.75 0.56
AVG 0.78 0.51 0.71 0.50 0.85 0.56 0.78 0.55
MAX 0.82 0.56 0.76 0.55 0.88 0.65 0.83 0.64

Table 3: iSTS 2016 test results in Headlines, Images and

Answers-Students on both scenarios. Baseline, AVG and Max

participants rows are taken from iSTS 2016. F, +T, +S and +TS

stand for the official evaluation metrics F1 Alignment, F1 Type,

F1 Score and F1 Type+Score.

ones in which iUBC scores best. Being sometimes
(primarily on gschunks scenario) the top perform-
ing system above the participants’ maximum. On
the contrary, it is harder for the system to perform
on the +T evaluation metric. This is related to what
have been described in section 3.3. That is, the sys-
tem finds it more difficult to fit the dataset labels
than the scores. The main conclusion drawn from
here could be that not only word embeddings, but
also lexicalized features may be necessary in order
to continue improving performance. Similar conclu-
sions are achieved in Yin et al. (2015) regarding to
the concatenation of word embedding based features
and other kind of features.

5 Conclusions and Future Work

Throughout this paper we have described iUBC: a
RNN and LSTM based system that has achieved rea-
sonable results on the interpretable STS 2016 task.
We have seen how the system works by jointly
training a classifier and a regressor to produce the
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relation labels and the similarity scores. We have
also described how the error gradient from this top
layer propagates to the bottom recurrent net, which
aims to capture the semantic representation of input
sentences into d-dimensional vectors.

We have shown performance of the system in
the iSTS 2016 test data and described that iUBC
performs especially well in the Answer-Students
dataset. In addition, we have mentioned that the
RNN based run is not able to perform as well
as LSTMs based runs. Moreover, we have seen
that including noise in the training data helps im-
prove performance in the Headlines dataset on the
syschunks scenario. But, worsens results in the Im-
ages dataset on the gschunks scenario.

We have also discussed that the model is more
suitable to produce similarity scores than relation
labels. This could be a consequence of the reduced
size of the training data and labeling being a more
demanding task. As regards this issue, we have men-
tioned that further features might be necessary in or-
der to continue improving the system’s results. In
any case, this will require some more analysis.

All in all, we can conclude by saying that the
interpretable STS task is an interesting challenge
whose aim is to share knowledge about building
NLP systems able to provide valuable feedback.
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