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Abstract

In this paper, a system for semantic tex-
tual similarity, which participated in Task-
1 in SemEval 2016 (monolingual and cross-
lingual sub-tasks) is described. The system
contains a preprocessing step that simplifies
text using PPDB 2.0 and detects negations.
Also, six lexical similarity functions were
constructed using string matching, word em-
bedding and synonyms-antonyms relations in
WordNet. These lexical similarity functions
are projected to sentence level using a new
method called Polarized Soft Cardinality that
supports negative similarities between words
to model opposites. We also introduce a novel
L2-norm “cardinality” for vector space repre-
sentations. The system extracts a set of 660
features from each pair of text snippets using
the proposed cardinality measures. From this
set, a subset of 12 features was selected in a
supervised manner. These features are com-
bined by SVR and, alternatively, by using the
arithmetic mean to produce similarity predic-
tions. Our team ranked second in the cross-
lingual sub-task and got close to the best offi-
cial results in the monolingual sub-task.

1 Introduction

Semantic Textual Similarity (STS) is a fundamental
task in the field of natural language processing that
has been addressed in SemEval competitions unin-
terruptedly since 2012 (Agirre et al., 2012; Agirre et
al., 2013; Agirre et al., 2014; Agirre et al., 2015).
The task is to compare two text fragments and pro-
duce a similarity score that is assessed according to
human judgment. This year (Agirre et al., 2016), a

new cross-lingual sub-task in English and Spanish is
proposed in addition to the traditional monolingual
English task. In SemEval 2015, the most popular ap-
proach among the best systems was the use of words
alignments between sentences combining resources
such as WordNet (Miller, George A., 1995), neural
word embedding (Mikolov, Tomas et al., 2013) and
the Paraphrase Database (Pavlick et al., 2015).

Figure 1: STS system architecture
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This paper describes our system submission to
STS 2016 that uses a cardinality-based approach
(instead of word alignments) for combining the
resources mentioned above. Several teams have
used soft cardinality successfully in previous STS
competitions from 2012 to 2014 (Jimenez et al.,
2012; Jimenez et al., 2013a; Jimenez et al., 2013b;
Jimenez et al., 2014; Lynum et al., 2014). For the
proposed system, we extended the model of soft car-
dinality to allow the use of negative values in the lex-
ical similarity component to model opposites due to
antonymy and negation.

Figure 1 shows the overall architecture of the
proposed system. Yellow labels in the upper left
corner of each process component (blue squares)
indicate the sections of this document where the
module is discussed. In this figure, the processing
pipeline is represented vertically in three stages: pre-
processing, feature extraction and model learning.
Red parallelograms represent the inputs and outputs
of each process, from the pair of snippets of text for
evaluation, through different intermediate represen-
tations (bag-of-words, vectors, etc.) and end on the
predictions of similarity scores. The left side con-
tains the used external resources linked to the pro-
cess that makes use of each one.

2 Preprocessing

2.1 Paraphrase Simplification

The Paraphrase Database (PPDB) is a list of pairs
of words, short phrases of syntactic rules where
each pair is semantically equivalent in some degree
(Pavlick et al., 2015). In PPDB, each paraphrases
pair {e1, e2} is obtained from translation models
making use of the observation that if e1 and e2 are
frequently translated to a same word or phrase in
a foreign language, then there is a high probabil-
ity of e1 and e2 being paraphrases of each other. In
PPDB 2.0 each pair is labeled with − log(P (e1|e2))
and − log(P (e2|e1)) obtained from the translation
models, where P (e2|e1) is the inferred probability
that the word or phrase e1 is a good paraphrase for
e2, and the contrary for P (e1|e2). The motivation
for using this resource is that text pairs that can be
paraphrased to simplified versions should be easier
to analyze by downstream modules. For example,
consider the paraphrase pair e1 =“interdisciplinary”

and e2 =“cross-disciplinary” labeled in PPDB with
− log(P (e2|e1)) = 4.28 and − log(P (e1|e2)) =
0.82. Now, consider a pair of sentences for STS
evaluation where these paraphrases occur: “The
study was interdisciplinary.” and “Our research
is cross-disciplinary.” Given that e1 is higher
scoring paraphrase for e2 than the contrary (i.e.
− log(P (e2|e1)) > − log(P (e1|e2))), e2 can be
replaced by e1 in the second sentence: “Our re-
search is interdisciplinary”. As a result, the pair
of sentences now contains more frequent words and
shares more words thereby facilitating subsequent
STS analysis.

Let A and B be a pair of texts snippets for STS
evaluation and e1 and e2 a pair of paraphrases from
PPDB. Thus, {e1, e2} occurs in {A,B} if e1 ⊂
A ∧ e2 ⊂ B or e2 ⊂ A ∧ e1 ⊂ B, being aware
of the special cases when e1 ⊂ e2 or e2 ⊂ e1(whole
words matching is used in those cases). The opera-
tor “⊂” means that the left argument is a sub-string
of the right one. The input pairs of sentences for
the STS task where preprocessed by looking for oc-
currences of paraphrases from PPDB and replacing
the least probable paraphrase by the most probable
paraphrase. For that, we used the top-ranked lex-
ical paraphrases and phrasal paraphrases from the
M-size version of the PPDB 2.0 1 (syntactic rules
were not used). We determined the number of top-
ranking lexical and phrasal paraphrases to use exper-
imentally by using the overall STS system described
in this paper trained and tested with STS datasets
from previous years. Consistent increases in the
performance measured by mean correlation was ob-
served as the number of used paraphrases increased.
The average relative improvement stabilized around
2% using 150,000 lexical paraphrases and 3,000,000
phrasal paraphrases. Using these thresholds for the
paraphrase database we assessed the 14 thousand
sentence pairs in training data and found 3,294 oc-
currences of lexical paraphrases and 1,778 phrasal
paraphrases.

2.2 Tokenizing, Stop-words Removal and
Negation Detection

The preprocessing continues by tokenizing sen-
tences, removing stop-words and labeling negated

1http://paraphrase.org/#/download
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words. For this stage, we use the tokenizer and stop-
words list from NLTK2 augmented with the follow-
ing words: should, now, ’s, ’t, ’ve, something, would
and also. Once stop-words are removed from the
text, each word preceded by a negation token is la-
beled as a negated word. The negation tokens we
use are: not, n’t, nor, null, neither, barely, scarcely,
hardly, no, none, nobody, nowhere, nothing, never
and without. The negation tagged tokens are used
by subsequent modules for modeling oppositeness
between negated and non-negated forms (e.g. “not
running” and “running”).

3 Lexical Similarity

The analysis of short texts based on soft cardinality
relies only on a similarity function between lexical
units (Jimenez et al., 2010). Therefore, the first com-
ponent of the proposed STS system is composed of
four lexical similarity functions that compare a pair
of words and yield a numerical value in [-1,1] in-
terval. Returning values of 1 means that the two
words can be considered identical, 0 for unrelated
words, negative values for representing opposition,
and other values for representing intermediate de-
grees of similarity and opposition. In this section,
the four lexical similarity functions we use are de-
scribed.

3.1 Lexical String Matching Boosted with
Synonyms and Antonyms

The NLP community has widely recognized that the
use of lemmas or stems, instead of words, is desir-
able in many applications of automatic text process-
ing. Therefore, before comparing any pair of words
we reduced them to their stems using the Porter’s al-
gorithm (Porter, 1980). Let x and y be two stemmed
words represented each as a sequence of charac-
ters. The first proposed lexical function replaces
this basic word representation by the set of tri-grams
and tetra-grams of characters on each word. This
representation was used successfully for addressing
the STS task with purely string-based approaches
(Jimenez et al., 2012). For example, the word coun-
try is stemmed to x =countri. Next, its [3:4]-grams
representation is x ={cou, oun, unt, ntr, tri, coun,
ount, untr, ntri}. Once x and y are represented as

2http://www.nltk.org/

described, they are compared with the following ex-
pression:

S1(x, y) =
|x ∩ y|√
|x| × |y|

The second lexical similarity function is the well-
known Jaro-Winkler (Winkler, 1990) expression:

d(x, y) =
1

3

(
m

len(x)
+

m

len(y)
+
m− t
m

)

S2 =

{
d(x, y) if d(x, y) < bt

d(x, y) + (lp× (1− d(x, y)) otherwise

Where, len(x) is the number of characters in word
x, m is the number of matching characters between
x and y, t is the number of transpositions between
x and y, lp is the length of the common prefix, p =
0.1, and bt = 0.7 is the “boost threshold”. The num-
ber of matching characters m is the number of com-
mon characters between x and y whose occurrences
are not farther than

⌊
max[len(x),len(y)]

2

⌋
− 1 posi-

tions. The number t of transpositions is the num-
ber of matching characters that occur in different se-
quence order on each string. Clearly, m ≤ len(x),
m ≤ len(y), and t ≤ m, therefore d(x, y) is defined
only in [0, 1] interval (ifm = 0, then d(x, y) is set to
0). Similarly to S1, S2 was used to compare stems
instead of words.

Both S1 and S2 returns 1 when x and y are iden-
tical, 0 when x and y do not have common charac-
ters, and intermediate values for other cases. To a
certain extent, this stem string similarity reflects se-
mantic similarity between words. To improve this
property, a wrapper function S̊ was built over S1
and S2 to include information from the synonym and
antonym relationships in WordNet and the negation
feature extracted at preprocessing stage (see subsec-
tion 2.2). If x and y are synonyms in WordNet,
then the wrapper function S̊ overwrites the results
of S1 and S2 to 1 (identical meaning). For the case
when x and y are antonyms, the wrapper function
should return a negative value to represent the oppo-
sition between words x and y (opposite meaning).
Unlike synonymy and identity, the relation between
antonymy and numerical oppositeness is rather un-
clear because most antonym pairs also are semanti-
cally similar (e.g. small-large) (Mohammad et al.,

751



2008). The natural choice for this negative values is
-1 (Yih et al., 2012)(Yih et al., 2012). However, in-
stead of setting -1 to represent oppositions between
two words, we decided to set this value as a param-
eter to be determined experimentally. For that, we
used the overall STS system described in this pa-
per with the STS datasets from previous years. The
value that optimized the mean correlation was -0.2
in a search range from -1 to 1. The negation feature
of the words is used to add negation logic to S̊. For
example, if x and y are synonyms but x is negated,
then they are considered antonyms. Some exam-
ples are: S̊(car, auto) = 1, S̊(¬car,¬auto) = 1,
S̊(¬car, auto) = −0.2, S̊(love, hate) = −0.2,
S̊(¬love,¬hate) = −0.2 and S̊(¬love, hate) =
1 (¬ signify “negated word”). In the remaining
cases, when x and y are neither synonyms nor
antonyms, the wrapper function returns Si(x, y) ex-
cept for the case when either x or y is negated.
In that later case, the wrapper function returns
0.26×Si(x, y), which is a scaling factor for model-
ing negation determined experimentally in the same
way as the opposite value of 0.2. A couple of
examples are: S̊1(skater, skateboard) = 0.489,
S̊1(¬skater, skateboard) = 0.489×0.26 = 0.127.
Henceforth, functions S1 and S2 are assumed to be
overwritten by the described wrapper function.

3.2 Word Embedding

Two additional lexical similarity functions were
built using word embedding representations. Let ~x
and ~y be the vectorial representations of words x and
y in Rn . The used lexical similarity function be-
tween a pair of words is the cosine between these
vectorial representations:

S3(x, y) =
~x · ~y

‖~x‖ × ‖~y‖
Function S3 is computed using the publicly avail-

able pre-trained Google News corpus word embed-
ding 3 from the word2vec tool (Mikolov, Tomas et
al., 2013). We also include a similar function S4
that is defined identically to S3 but uses pre-trained
Twitter corpus word embedding 4 from the GloVe

3GoogleNews-vectors-negative300.bin downloaded from
https://code.google.com/archive/p/word2vec/

4glove.twitter.27B.50d.txt downloaded from
http://nlp.stanford.edu/projects/glove/

tool (Pennington, Jeffrey et al., 2014). These cosine
based similarities produce scores in the range from
-1 to 1.

4 Polarized Soft Cardinality

Lexical similarity can be leveraged to address sen-
tence similarity by aggregating lexical similarity
scores. One successful mechanism for doing this
is soft cardinality (Jimenez et al., 2010), which is a
generalization of the classic set cardinality that con-
siders similarities between elements. Thus, the soft
cardinality of a bag of words A = {a1, a2, . . . , an}
(i.e. a sentence) and a similarity function between
words S(ai, aj) is defined by this expression:

|A|S =
n∑

i=1

(
1∑n

j=1 S(ai, aj)p

)

Where p is the softness-control parameter, which
is positive and its default value is p = 1. Soft car-
dinality is a generalization of classic cardinality be-
cause as p increases, |A|S gets closer to |A|. The
soft cardinality of the union of two bags of words
|A ∪ B|S is simply the soft cardinality of the con-
catenation of the bags. The soft cardinality of the
intersection of two bag is defined as |A ∩ B|S =
|A|S + |B|S − |A ∪ B|S . This model is restricted
only to positive lexical similarity functions because
negative values could lead to division-by-zero if∑n

j=1 S(ai, aj)
p = 0 for any ai.

Given that the lexical similarity functions S1 to S4
(described in Section 3) can return negative values
for words with opposite semantics, a new soft car-
dinality model that supports such negative similar-
ities between elements was proposed for this com-
petition. The new polarized soft cardinality model
is:

|A|S =
n∑

i=1

(
2− 1

1−∑n
j=1 neg(S(ai,aj),p)∑n

j=1 pos(S(ai, aj), p)

)

neg(s, p) =

{
(−s)p if s < 0

0 otherwise

pos(s, p) =

{
sp if s ≥ 0

0 otherwise

Functions neg(s, p) and pos(s, p) filter respec-
tively negative and positive values of s, then raise
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them to p power ignoring the sign. Note that,
if S(ai, aj) is strictly positive, then this model is
equivalent to soft cardinality . This new model
inserts dummy or “ghost” elements in A if there
are opposite elements in A. For example, con-
sider A = auto, love, hate and S(auto, love) =
S(auto, hate) = S(love, hate) = 0. Clearly,
|A|S = 3. However, if S(love, hate) = −1, then
|A|S = 4. This increment in soft cardinality reflects
the presence of a dummy element due to the fact that
love and hate are opposites.

Using the lexical similarity functions presented
in Section 3, four soft cardinality functions can be
built: | ∗ |S1 , | ∗ |S2 , | ∗ |S3 and | ∗ |S4 . Each of those
has the following softness control parameter values:
pS1 = 1.05, pS2 = 0.85, pS3 = 0.5 and pS4 = 0.65,
which were obtained experimentally using STS data
from previous SemEval campaigns. These soft car-
dinality functions are used to extract numerical fea-
tures from each pair of sentences to be evaluated (see
Section 6).

5 L2-norm Cardinality

Given two sentences A and B represented as bag
of words, the proposed L2-norm cardinality is a
measure of the amount of information in A, B,
A ∩ B and A ∪ B. L2-norm cardinality is anal-
ogous to soft cardinality but uses vectorial repre-
sentations of the words and vector operations in its
formulation. Instead of exploiting pairwise simi-
larities between words as soft cardinality does, L2-
norm cardinality uses vectorial representations of
the words in the “bag” to assess its cardinality. Let
A = {~a1,~a2, . . . ,~ap} and B = {~b1,~b2, . . . ,~bq} be
a bag of vector-represented words in Rn , where p
and q are the number of words in A and B respec-
tively. Firstly, A and B obtain a representation in
Rn by adding up the vectors in their respective bags,
i.e. A =

∑p
i=1~ai and B =

∑q
i=1

~bi . L2-norm
cardinality is defined by the following expressions:

|A|n = ‖A‖2

|B|n = ‖B‖2

|A ∩B|n = A ·B
|A ∪B|n = |A|n + |B|n − |A ∩B|n

Two L2-norm cardinality functions can be built

reusing the same word embedding used in S3 and
S4. Thus, | ∗ |300 is obtained using the pre-trained
word2vec vectors and | ∗ |50 is obtained from the
pre-trained GloVe vectors. L2-norm cardinalities
| ∗ |300 and | ∗ |50 are added to the set of the four
previously proposed soft cardinality functions to be
used for extracting numerical features from sentence
pairs.

6 Feature Extraction

The six cardinality functions proposed in Section 4
and Section 5 can be used to build a variety of sim-
ilarity assessment measures for STS.. For example,
for sentencesA andB, the expression sim(A,B) =
|A∩B|S1
|A∪B|S1

is a possible STS measure based on Jac-
card’s coefficient. However, the space of possible
similarity functions that can be built from cardinali-
ties |A|S1 , |B|S1 , |A ∪ B|S1 and |A ∩ B|S1 is huge.
We explore a limited portion of this space by gener-
ating similarity function expressions from a set of
11 factors (see Table 1). Parameter c in Table 1
represents the sub-index for identifying the possible
cardinality function, c ∈ {S1, S2, S3, S4, 300, 50}.
The set of expressions used for combining these fac-
tors is heuristic but motivated by the formulations of
existing cardinality-based similarity measures (e.g.
Jaccard, Dice, matching, cosine among others). For
each one of the six cardinality functions, these fac-
tors were combined into expressions that generate a
total of 11×10 = 110 features of the form fi

fj
; i 6= j.

7 Feature Selection

The feature selection process consists in selecting
the k-best features from the set of 110 features
for each cardinality function. We used the method
SelectKBest5 from the Scikit-learn machine learn-
ing kit (Pedregosa, Fabian et al., 2011). The data
used for this selection process was the concatena-
tion of 20 STS datasets labeled with gold standard
from the past SemEval campaigns from the years
2012 to 2015 (14,437 sentence pairs with gold stan-
dard annotations). The process was performed us-
ing 10-fold cross-validation repeating the selection
ten times with different randomly selected fold par-
titions. The k features that were selected the most

5http://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.SelectKBest.html
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Factor Expression† Name

f1 |A ∩B|c intersection
f2 |A ∪B|c union
f3 |A4B|c symmetric diff.
f4 min[|A|c, |B|c] minimum
f5 max[|A|c, |B|c] maximum
f6 0.5× (|A|c + |B|c) mean
f7

√
|A|c × |B|c geometric mean

f8
√

0.5× (|A|2c + |B|2c) quadratic mean
f9

3
√

0.5× (|A|3c + |B|3c) cubic mean
f10

4
√

0.5× (|A|4c + |B|4c) 4thmean
f11 1.0 1.0

† c ∈ {S1, S2, S3, S4, 300, 50}
Table 1: Factors for rational similarity functions based on car-

dinality functions

times in the k-best selection after all runs were re-
tained for the final model. Preliminary experiments
suggest a good value for k is two, as determined us-
ing the overall STS system with the same data. Ta-
ble 2 shows the selected features for each cardinal-
ity function and their results on the mean correla-
tion performance measure as assessed under previ-
ous STS shared task evaluation settings. Although,
none of the features outperformed the best official
results, results of | ∗ |S1 and | ∗ |300 cardinality func-
tions are highly competitive. It is important to note
that, in spite that the feature selection procedure is
supervised, the selected features by themselves are
inherently un-supervised.

8 Feature Combination

The 12 selected features showed in Table 2 were
combined to produce predictions for our three
participating runs. Run1 and run2 were SVR
(support-vector regression) models with RBF kernel
(Drucker, Harris et al., 1997) built with the 14,437
sentence pairs available for training. The difference
between run1 and run2 is the values of the used SVR
parameters C and γ. For run1, we used C = 0.6
and γ = 0.004, which were obtained by optimizing
the weighted average of Pearson correlations using
each available STS dataset alternatively for testing
and the remaining pairs for training. For run2, we
used C = 53 and γ = 0.012, which were obtained
using all 14,437 sentence pairs as a single dataset

and 5-folds cross-validation in 5 randomly selected
division folds.

Unlike run1 and run2, run3 was effectively un-
supervised and operated by simply averaging the 12
feature values after multiplying by -1 the values of
the features with negative correlations in Table 2.

9 Cross-lingual Sub-task

The predictions of the three runs submitted to the
STS cross-lingual sub-task were produced using
the same systems that produced predictions for the
STS monolingual sub-task (English). For that, the
texts in Spanish were translated into English using
Google’s public translate service.6

10 Results

Table 3 shows results obtained with the same sys-
tems used to produce our runs 1, 2 and 3, but using
datasets from STS competitions from 2012 to 2015.
The results labeled as “held-out” were obtained by
holding out each dataset for testing and using the
remaining datasets for training including the three
training datasets from 2012. The results labeled
as “same-data” were otained using the same train-
ing data available during each historical STS eval-
uation. All “held-out” systems outperformed con-
sistently the best official results obtained by a single
system for each year using the performance measure
of weighted mean correlation. For the “same-data”
systems, the run1 outperformed historical official re-
sults from 2013 to 2015, while run2 and run3 made
it only for 2013 and 2014. Table 4 shows results
of the same systems (“held-out” testing setting) and
the best official results obtained on each dataset of
the 20 individual evaluation datasets from prior STS
competitions. In this tougher comparison, the pro-
posed systems obtained state-of-the-art results in 10
out of the 20 individual datasets, and competitive re-
sults for the majority of the remaining datasets. Fi-
nally, Table 5 and Table 6 show the results obtained
by our systems on the 2016 datasets along with the
best official results of the competition. When com-
paring our three runs, none of them was consistently
better with the three runs typically obtaining similar
results. Therefore, it is possible to conclude that the

6https://translate.google.com/
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Cardinality function Feature Expression 2012 2013 2014 2015

| ∗ |S1
f3/f8

|A4B|S1√
0.5×(|A|2S1

+|B|2S1
)

-0.6404 -0.5994 -0.7538 -0.7953

SC+[3:4]grams f3/f9
|A4B|S1

3
√

0.5×(|A|3S1
+|B|3S1

)
-0.6376 -0.5952 -0.7534 -0.7933

| ∗ |S2
f1/f2

|A∩B|S2

|A∪B|S2
0.4327 0.3287 0.3793 0.4012

SC+Jaro-Winkler f3/f2
|A4B|S2

|A∪B|S2
-0.4327 -0.3385 -0.3793 -0.4012

| ∗ |S3
f8/f2

√
0.5×(|A|2S3

+|B|2S3
)

|A∪B|S3
0.5671 0.4722 0.5572 0.5831

SC+word2vec f9/f2
3
√

0.5×(|A|3S3
+|B|3S3

)

|A∪B|S3
0.5652 0.4702 0.5604 0.5804

| ∗ |S4
f11/f1 1.0

|A∩B|S4
-0.2195 -0.2331 -0.3014 -0.2961

SC+GloVe f3/f2
|A4B|S4

|A∪B|S4
-0.4348 -0.2915 -0.3168 -0.3093

| ∗ |300 f3/f11
|A4B|300

1.0 -0.6389 -0.6065 -0.7334 -0.7509
L2-norm+word2vec f3,/f5

|A4B|300
max[|A|300,|B|300] -0.6389 -0.6022 -0.7334 -0.7509

| ∗ |50 f1/f2
|A∩B|50
|A∪B|50 0.5377 0.4750 0.5808 0.5744

L2-norm+GloVe f3/f2
|A4B|50
|A∪B|50 -0.5377 -0.4750 -0.5808 -0.5744

Best official result at SemEval 0.6773 0.6181 0.7610 0.8015
Table 2: Results of mean correlation (official performance measure) of the 2-best features for each cardinality function in previous

years STS data

System 2012 2013 2014 2015

run1.held-out 0.6951 0.6393 0.7842 0.8101
run2.held-out 0.6895 0.6367 0.7826 0.8013

run3.held-out 0.6945 0.6383 0.7851 0.8099

run1.same-data 0.6771 0.6322 0.7692 0.8048
run2.same-data 0.6696 0.6241 0.7677 0.7931

run3.same-data 0.6721 0.6327 0.7553 0.7925

best official result 0.6773 0.6181 0.7610 0.8015

Table 3: Results of our 2016 systems using data from previ-

ous STS SemEval competitions (mean correlation performance

measure).

contribution of SVR was not considerable, with an
exception for the answer-answer dataset.

11 Conclusion

The proposed STS system combined effectively the
most popular resources used by the top systems dur-
ing the SemEval 2015 for STS shared task. Results
show that the proposed system outperformed all past
systems in a per-system based comparison, and ob-
tained state-of-the-art results in half of the datasets
from past STS competitions at SemEval.

Yr. Dataset run1 run2 run3 best†

20
12

MSRpar 0.6522 0.6549 0.5829 0.7343
MSRvid 0.8520 0.8612 0.8494 0.8803

SMTeurop. 0.5332 0.5285 0.5499 0.5666
OnWN 0.7270 0.7120 0.7228 0.7273

SMTnews 0.6068 0.5750 0.5965 0.6085

20
13

FNWN 0.4705 0.3920 0.4721 0.5818
headlines 0.8006 0.8020 0.7836 0.7838

OnWN 0.7865 0.8057 0.7562 0.8431
SMT 0.4105 0.4065 0.4165 0.4035

deft-forum 0.5512 0.5307 0.5464 0.5305

deft-news 0.7925 0.7757 0.7823 0.7850

20
14

headlines 0.7913 0.7914 0.7768 0.7837

OnWN 0.8367 0.8388 0.8224 0.8745
tweet-news 0.8019 0.8027 0.8148 0.7921

images 0.8435 0.8514 0.8324 0.8343

20
15

ans.-forums 0.7474 0.7066 0.7364 0.7390

ans.-studt. 0.7853 0.7698 0.7900 0.7879

belief 0.7536 0.7464 0.7496 0.7717
headlines 0.8307 0.8289 0.8183 0.8417
images 0.8740 0.8797 0.8712 0.8713

†Official results of the best system for each dataset

Table 4: Results of our 2016 systems being compared against

best official results in a comparison for each dataset.
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2016 dataset run1 run2 run3 best

answer-answer 0.5018 0.5526 0.4907 0.6924

headlines 0.7865 0.7830 0.7773 0.8275

plagiarism 0.8365 0.8151 0.8293 0.8414

postediting 0.8364 0.8163 0.8481 0.8669

question-quest. 0.6652 0.6663 0.6729 0.7471

ALL mean r 0.7241 0.7262 0.7222 0.7781†
†Best individual system submission

Table 5: Official results for our participating systems in the

monolingual sub-task (English).

2016 dataset run1 run2 run3 best

News 0.8872 0.8291 0.8965 0.9124

Multisource 0.8184 0.8127 0.8074 0.8190

ALL mean r 0.8532 0.8210 0.8525 0.8631

Run Rank 3rd 7th 4th 1st

Team Rank 2nd 2nd 2nd 1st

Table 6: Official results for our participating systems in the

cross-lingual sub-task (English/Spanish).
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