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Abstract 

A growing body of research has recently been 
conducted on semantic textual similarity using 
a variety of neural network models. While re-
cent research focuses on word-based represen-
tation for phrases, sentences and even 
paragraphs, this study considers an alternative 
approach based on character n-grams. We 
generate embeddings for character n-grams 
using a continuous-bag-of-n-grams neural 
network model. Three different sentence rep-
resentations based on n-gram embeddings are 
considered. Results are reported for experi-
ments with bigram, trigram and 4-gram em-
beddings on the STS Core dataset for 
SemEval-2016 Task 1.  

1 Introduction 

This paper presents an approach for finding the 
degree of semantic similarity between sentence 
pairs. Semantic textual similarity (STS) is of rele-
vance to many NLP applications. Recent tasks in 
recognizing textual entailment, sentence comple-
tion and paraphrase identification are closely relat-
ed. The approach described here makes use of a 
neural network (NN) algorithm (word2vec) that is 
typically used to generate word embeddings 
(Mikolov et al., 2013a). Rather than generating 
vector representations for words however, we pro-
pose a character n-gram-to-vector approach. A sen-
tence is then represented as a vector generated 
through a combination of character n-gram embed-
dings. 

The use of character level vectors has been pro-
posed in a number of recent studies. Subword lan-
guage models that use the combination of 
characters, syllables and frequent words have been 

explored by Mikolov et al. (2012). Character-level 
language modeling has been performed for model-
ing OOV words, where using words as the atomic 
units of the model would not be sufficient to assign 
a probability score. In Ling et al. (2015), word rep-
resentations are composed of vectors of characters, 
called character to word (C2W). The C2W vectors 
are used successfully for language modeling and 
POS tagging without any handcrafted features. The 
resulting model is competitive on English POS 
tagging with the Stanford POS tagger word look-
up tables and also produces a notable improvement 
in results for morphologically rich languages such 
as Turkish. Kim et al. (2015) apply a simple con-
volutional neural network model, which uses char-
acter level inputs for word representations. Again, 
this method outperforms the models that use 
word/morpheme level features in morphologically 
rich languages, while also having competitive re-
sults in English. Huang et al. (2013) introduce a 
word hashing technique using character n-grams to 
scale up training of deep NN models for large-
scale web search applications. 

Our motivation for exploring character n-grams 
derives in part from previous work we have con-
ducted on paraphrase identification (PI). The PI 
task is that of deciding whether two sentences have 
the same meaning. We have shown that sentence 
representations based on bags or sets of character 
n-gram features can perform well at this task 
(Eyecioglu and Keller, 2015). It is hypothesized 
that n-grams are useful for capturing lexical simi-
larity and perform a role similar to lemmatization 
whilst preserving differences. Thus, sentence rep-
resentations based on collections of n-grams as 
features may offer some advantages over represen-
tations based on words as features. 
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The current study aims to extend this earlier 
work by working with n-gram embeddings.  
(Mikolov et al., 2013a) introduced two new NN 
architectures that were applied to learning word 
embeddings: continuous-bag-of-words (CBOW) 
and skip grams (SG). These NN models have been 
shown to perform well in many NLP areas such as 
STS and PI (Zarrella et al., 2015; Yin and Schütze, 
2015; He et al., 2015). Recent research has taken 
steps to extend these word vectors to sentences, 
paragraphs and documents (Le and Mikolov, 
2014).  

We introduce an alternative approach to obtain-
ing sentence level embedding vectors that make 
use of character n-grams rather than words. We 
adopt a model architecture that is analogous to 
CBOW, which we call continuous-bag-of-n-grams 
and notate as CBOnG throughout the paper. In 
keeping with our earlier work on paraphrase identi-
fication (Eyecioglu and Keller, 2015), pre-
processing is kept to a minimum and no use is 
made of any manually constructed semantic or 
syntactic processing tools or resources. 

Operationally, STS is similar to paraphrase 
identification. The two tasks differ in that STS sen-
tence pairs are assigned a degree of semantic 
equivalence instead of a binary paraphrase label. 
STS shared tasks have produced a sizable amount 
of research on sentence similarity (Agirre et al., 
2012, 2013, 2014, 2015). 

2 The Task 

SemEval-2016 Task 1: Semantic Textual Similari-
ty (Agirre et al., 2016) requires systems to deter-
mine the degree of semantic similarity between 
pairs of sentences. Similarity scores are on a scale 
from 0 (completely dissimilar) to 5 (semantically 
equivalent). We participated in the monolingual 
STS Core subtask. This subtask includes English 
language evaluation data from multiple sources 
organized into 5 distinct evaluation datasets: Pla-
giarism Detection, Q&A Question-Question, Q&A 
Answer-Answer, Post-Edited Machine Transla-
tions and Headlines. The evaluation data have a 
gold standard similarity score based on human 
judgements collected using Crowdsourcing. The 
Pearson correlation between similarity scores as-
signed by the systems and the human judgements 
is used to assess task performance. 

3 Approach 

The sentences within the STS pairs are split into 
character n-grams. No preprocessing is applied 
besides lowercasing of the text and removing 
punctuation. 

Our training procedure was unsupervised, using 
only a large unlabelled dataset drawn from Wik-
ipedia. These data are used to train a CBOnG mod-
el. We explore using three different methods for 
constructing sentence level vector representations 
from the character embeddings. STS scores for the 
sentence pairs are computed as the cosine similari-
ty of the resulting sentence level embedding vec-
tors. Three different cosine similarity scores, one 
from each representation, are obtained.  

4 Wikipedia Dataset  

We used a dump of English Wikipedia articles1 
that includes 3,831,719 articles and 8,179,596 
unique words. Wikipedia provides a large and ac-
cessible collection of text consisting of well-
formed sentences that is suitable for training pur-
poses. We obtained a plain text representation of 
the documents by removing the data dump xml 
tags using the script provided in the Gensim pack-
age (Rehurek and Sojka, 2010). Matching the min-
imal pre-processing performed on the STS pairs, 
training data are only lowercased and cleared of 
punctuation. The Wikipedia dataset is split into 
adjacent n-grams and spaces between words re-
placed with the “-” symbol. For example, the fol-
lowing sequence of trigrams would be produced 
from the text amazon gift. 

-am ama maz azo zon on- n-g -gi gif ift ft-  

4.1 Constructing a CBOnG Model 

Our CBOnG is constructed and trained identically 
to a CBOW model (Mikolov et al., 2013a) but sub-
stituting character n-grams in place of words. The 
quality of such a model is affected by a number of 
hyper-parameters such as the size of the character 
n-gram vectors (embeddings), the size of the train-
ing window, and the cut-off point for less frequent 
n-grams. Although experiments by Mikolov et al. 
(2013b) describe how to choose the appropriate 
features for a word similarity task, the same fea-

                                                        
1 Downloaded at 07/07/2015 from 
https://dumps.wikimedia.org/enwiki/ 
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tures might not be ideal here. Moreover, our model 
brings an additional new modeling parameter that 
defines the size of the character n-grams.  

Embedding models scale linearly with the 
number of unique unfiltered tokens in the training 
data. Each token has a corresponding fixed size 
embedding vector. Mikolov et al. (2013a) explored 
using embedding vector sizes ranging from 20 to 
600. In general, the results showed that increasing 
the dimensionality of vectors and the size of train-
ing data, improved the accuracy on semantic-
syntactic word relationship task using otherwise 
identical features.  

For our experiments, we make use of 400 di-
mension embedding vectors. Our CBOnG model 
was trained using surrounding n-grams within a 
window size of 5. Character n-grams that occur 
fewer than 5 times are filtered. Our model is 
trained using the Gensim package (Rehurek and 
Sojka, 2010) and its support for CBOW (word-
level) models but over data tokenized into charac-
ter n-grams. 

4.2 Compositions of Vector Representations 

The construction of embedding vectors for 
phrases and sentences directly from word embed-
dings is still an active area of research. As noted in 
Section 2, there have been various efforts to build 
good embedding representations of text beyond 
those tied to individual words. We believe the di-
versity of methods for constructing textual embed-
ding representations beyond the word level is due 
to the fact the appropriateness of the various repre-
sentations is very task dependent.  

One simple approach is to construct textual em-
bedding representations using either point-wise 
addition multiplication of the embedding vectors 
representing individual words and phrases. The 
resulting representations have been shown to work 
well for phrase similarity and PI tasks (Blacoe and 
Lapata, 2012).  

We make use of a similar composition algo-
rithm for our sentence level embeddings, but using 
character n-gram rather than word embeddings. 
We describe three different methods for combining 
n-gram embeddings. The first is formed by addi-
tion of the embeddings of the n-gram tokens in a 
sentence, effectively weighting the embeddings by 
their frequency. The second and third are based on 
n-gram types, and formed by concatenation and 
weighted addition, respectively.  

4.3 Sentence Representations 

For the STS task, the core experimental unit is a 
pair of sentences. A target sentence, 𝑆 , consisting 
of some sequence of n tokens (i.e. character n-
grams) (𝑡!! , 𝑡!! ,… , 𝑡!!) is paired with another sen-
tence, 𝑆′ that consists of some sequence m of to-
kens (𝑡!!! , 𝑡!!! ,… , 𝑡!!!). Note that the numbers of 
tokens for each sentence do not necessarily need to 
be equal. In the following, a vector embedding as-
sociated with a token 𝑡  is notated by 𝑣!. We con-
sider three different vector based sentence 
representations built from n-gram embeddings. 
     For a given sentence 𝑆, the first representation 
is produced through element-wise addition of the 
vectors associated with each token in 𝑆. The result 
of this operation is a vector 𝑉!! having the specified 
vector size of the token embeddings, as is defined 
in advance to building the models (i.e. 400 in this 
case).  

For the second approach, 𝑆  is represented as a 
matrix of size 400×𝑑, where 𝑑 is the size of the 
model vocabulary (i.e. the number of unique n-
grams using in training). Combining the d vectors 
in order forms a vector representation: 

𝑉!! = 𝑣!!! , 𝑣
!
!! ,… , 𝑣

!
!!    

where 𝑣!!! is the embedding associated with the ith 
term 𝑡! in the model vocabulary if 𝑡! occurs in 𝑆, 
and is the null vector if the ith term does not occur 
in 𝑆 . 

Finally, for the third representation, element-
wise addition of all of the embeddings in 𝑉!! is 
computed. We obtain a new vector of 𝑉!! the di-
mension of the embedding vector size, which is 
specified as 400:  

𝑉!! = 𝑣!!! +  𝑣!!! +⋯+  𝑣!!!    

We note that the difference between Run1 and 
Run3 is that for Run1, the contributions of the n-
gram embeddings are weighted for frequency.  

5 Experiments 

    To obtain semantic similarity scores for each 
pair of sentences 𝑆  and 𝑆 ′, the cosines of the cor-
responding vector representations are computed. 
 

Run1: 𝑆𝑖𝑚1(𝑆, 𝑆!) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑉!!,𝑉!!!) 
Run2: 𝑆𝑖𝑚2(𝑆, 𝑆!) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑉!!,𝑉!!!) 
Run3: 𝑆𝑖𝑚3(𝑆, 𝑆!) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑉!!,𝑉!!!) 
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Previous work on the use of character n-grams 
for PI has shown that trigrams perform well. The 
three runs chosen for submission to SemEval 
2016’s STS task use sentence representations con-
structed from trigram embeddings. Wikipedia arti-
cles were pruned using the Gensim package with 
default parameters. A total of 108,452 articles are 
used to construct a character-trigram model for the 
experiments. The statistical properties of the Wik-
ipedia-trained model using character trigrams are 
shown in Table 1 below.  

 

Properties Count 
Total trigrams 1,068,456,094 
Unique trigrams 91,686 
Unique trigrams > 5 47,951 

Table 1: Statistical properties of Wikipedia dataset used in our 
experiment. 
 

Further experiments were conducted for sentence 
representations based on bigrams and 4-grams. 
Although these were not submitted for the task, the 
results are also reported in the following section. 

6 Results 

The Pearson Correlation results from our three dif-
ferent runs obtained using trigram embeddings are 
presented in Table 2. These results represent the 
ASOBEK submission to SemEval-2016 Task 1. It 
is noted that Run2 and Run3 generally appear to 
outperform Run1, with Run2 performing best 
overall. The best individual result is obtained on 
the Post-editing dataset. This result is ranked above 
the median for results reported on this sub-task. 
The correlation scores evidence variable perfor-
mance across the individual datasets. Most notable 
is that the results from each of the runs applied on 
the Question-Question dataset are much lower rela-
tive to the other categories. In spite of this, the 
overall performance is 0.6178 with Run2. 
 

 

Datasets (Trigrams) Run1 Run2 Run3 
Overall 0.5956 0.6178 0.6143 
Answer-Answer 0.4269 0.5228 0.4792 
Headlines 0.6790 0.6374 0.6865 
Plagiarism 0.7572 0.7852 0.7778 
Post-editing 0.8195 0.8425 0.8409 
Question-Question 0.2618 0.2635 0.2480 

Table 2: Pearson Correlation Results using character trigrams  
Experiments were also conducted for bigrams and 
4-grams. Results are shown in Table 3. Highlight-

ed scores indicate cases where performance ex-
ceeds that obtained using trigram embeddings.  

As for trigrams, better results are generally ob-
tained for Run2 and Run3. For 4-grams, the overall 
performance of Run3 actually exceeds that based 
on trigrams. Across all of the systems, results on 
the Question-Question dataset depress the overall 
performance significantly. This is especially evi-
dent for Run2 of the 4-gram dataset, where there is 
little correlation evident between system scores 
and human judgements. In contrast, using bigrams 
Run2 produces our best result for this dataset. Ex-
amination of the data indicates that this may be due 
to the particular form of the questions. For exam-
ple, character n-grams generated from the follow-
ing pair will contain many tokens that are not 
informative in discriminating meaning:  
 

What should I look for in a jump rope? 
What should I look for in a running shoe? 
 

Datasets (Bigrams) Run1 Run2 Run3 
Overall 0.5340 0.5996 0.5784 
Answer-Answer 0.3869 0.4547 0.4520 
Headlines 0.6422 0.6697 0.6668 
Plagiarism 0.6204 0.7088 0.6582 
Post-edit. 0.7439 0.8168 0.7879 
Question-Question 0.2768 0.3482 0.3270 
Datasets (4-grams) Run1 Run2 Run3 
Overall 0.6088 0.5567 0.6183 
Answer-Answer 0.4587 0.5375 0.4927 
Headlines 0.6757 0.6023 0.6831 
Plagiarism 0.7743 0.7507 0.7796 
Post-editing 0.8295 0.8356 0.8417 
Question-Question 0.3057 0.0574 0.2943 

Table 3: Pearson Correlation Results using character bigrams 
and 4-grams 

7 Conclusions 

A method for STS based on embeddings of charac-
ter n-grams generated by a CBOnG model was 
introduced. This is the only study that we are 
aware of that utilizes embeddings of character n-
grams to build representations of sentences. The 
study presents preliminary results showing that the 
approach can successfully help identify semantic 
similarity of sentence pairs.  

Using our method, we observe significant varia-
tions in performance across the STS Core datasets. 
In particular, performance is generally poor for the 
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Question-Question dataset. This suggests that it 
may improve performance to weight the contribu-
tions of the embeddings according to the informa-
tiveness of the associated n-grams. We intend to 
consider this in future experiments.  
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