
Proceedings of SemEval-2016, pages 712–717,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

NUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning
for Semantic Textual Similarity

John P. McCrae and Kartik Asooja and Nitish Aggarwal and Paul Buitelaar
Insight Centre for Data Analytics

National University of Ireland, Galway
IDA Business Park

Galway, Ireland
{john.mccrae, katrik.asooja, nitish.aggarwal,

paul.buitelaar}@insight-centre.org

Abstract

We present a multi-feature system for comput-
ing the semantic similarity between two sen-
tences. We introduce the use of soft align-
ment for computing text similarity, and also
evaluate different methods to produce it. The
main features used by our system are based
on alignment and Explicit Semantic Analysis.
Our system was above the median scores for
4 out of the 5 datasets at SemEval 2016 STS
Task 1.

1 Introduction

Semantic textual similarity is the task of deciding if
two sentences express a similar or identical mean-
ing and requires a deep understanding of a sentence
and its meaning in order to achieve high perfor-
mance. Recent successful approaches to this prob-
lem have been based on the idea of creating mono-
lingual alignments (Sultan et al., 2014a) indicating
which words in each of the two sentences corre-
spond to each other. This is quite successful in many
cases where many words have the same lemma,
however when synonymous and semantically sim-
ilar terms are used, it is much harder to construct
alignment. For this reason, we propose the use of
soft alignments, where instead of producing a hard
linking between individual words in the sentence,
we instead produce a score indicating how likely one
word in a sentence is to be aligned to another word
in the other sentence. We examine several methods
that can be used to learn these alignments including
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) and models based on deep learn-

ing that have been suggested for machine transla-
tion (Bahdanau et al., 2014; Cho et al., 2014). In
addition, we look into recent models for sentence
and document similarity that can leverage the large
amount of loosely aligned text in particular those
based on Explicit Semantic Analysis (Gabrilovich
and Markovitch, 2007) and recent extensions aimed
at generating orthogonal representations (McCrae et
al., 2013; Aggarwal et al., 2015). While these novel
techniques alone can achieve high performance on
the task, we note that simple metrics such as the
number of overlapping terms can produce reason-
able performance. For added robustness we combine
features based on simple metrics with novel methods
explored in this work as a multi-feature regression
problem, which we solve by means of an M5 Deci-
sion tree (Wang and Witten, 1996; Quinlan, 1992).
The rest of the paper is structured as follows: we
present our system in Section 2. We then present
both our internal evaluation results and the official
Task 1 results in Section 3 and finally we conclude
in Section 4.

2 Methods

For convenience we assume that semantic textual
similarity consists of finding a function that maps
two strings, a and b, of length na,nb, to a single
value y ∈ [0, 1]. We will use A to denote the set of
words in a and B for the words in b. We assume
we have a dataset D consisting of triples of the form
(ai,bi, yi).
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2.1 Baseline features

The basic level of our system is the construction of
baseline features that can be quickly and easily eval-
uated to quickly find candidates that are likely to be
highly similar, which may be useful in search appli-
cations. Our features were partially based on those
of Hänig et al. (2015), but simplified such that we
do not require a part-of-speech tagger. The features
we used are as follows:

Longest Common Subsequence The length in to-
kens of the longest common subsequence be-
tween the two sequences

n-gram Overlap The number of n-grams that oc-
cur in both sentences divided by the length of
the shorter sentence.

Jaccard The Jaccard Index of the sentences using a
bag-of-words model (|A ∩B|/|A ∪B|).

Dice The Dice Co-efficient of the sentences using a
bag-of-words model (2|A ∩B|/(|A|+ |B|)).

Containment The containment of the sen-
tences using a bag-of-words model
(|A ∩B|/min(|A|, |B|)).

Sentence Length Ratio The length of the sen-
tence using the following symmetrized ratio:
min(|a|, |b|)/max(|a|, |b|).

Average Word Length Ratio The average length
of the words, using the symmetric ratio as
above.

Greedy String Tiling As in Wise (1993), we used
Arun Kumar Jayapal’s implementation1, where
similarity is given as follows, where coverage
is the number of tokens covered by the tiling.

2× coverage

|A|+ |B|

Source and Target Length The length (in tokens)
of each of the two strings

1https://github.com/arunjeyapal/
GreedyStringTiling

Keypairs For each word pair (a, b) where a ∈ A
and b ∈ B, we calculated

λa,b =
∑

(ai,bi,yi)∈D,a∈ai,b∈bi
yi − ȳ

Where ȳ =
∑
D yi
|D| . We took only the word

pairs with the 20 highest absolute values for
λa,b. The feature consisted of the number of
occurrences of these keypairs.

2.2 Hard alignment
As we believe that hard alignments are also useful,
we included features from hard alignment, firstly us-
ing a model based on Sultan et al. (2014b)’s system.
We simplified this method using only the Word Sim-
ilarity Aligner (wsAlign) and Named Entity Aligner
(neAlign) parts of Sultan’s method, we found that
this agreed with Sultan’s implementation2 to an F-
Measure of 93.8% and our observations and inter-
nal results suggested that the differences in align-
ments did not correspond to obvious improvements
in alignment accuracy.3

We also use the alignments given by Jacana
aligner (Yao et al., 2013)4 directly as further align-
ments in our system. Jacana is a discriminatively
trained monolingual word aligner that uses Condi-
tional Random Field (CRF) model to globally de-
code the best alignment. It uses features based on
WordNet and part-of-speech tags.

2.3 Soft Alignment
2.3.1 WordSim

Semantic relatedness measures can be directly
used to compute the soft alignments between the
sentences. In this approach, we compare the pre-
trained neural word embeddings to compute the re-
latedness between words across both the sentences,
thus producing the soft alignment matrix. We use
cosine similarity for this purpose. We use the neu-
ral embeddings5 developed by Baroni et al. (2014).

2https://github.com/ma-sultan/
monolingual-word-aligner

3For example in the pair “Being against nukes does not
mean not wanting to use nukes” and “Being against using nukes
means not wanting to use nukes” the systems differed in the
alignment of the word “use”

4https://github.com/chetannaik/jacana
5Best predict vectors on http://clic.cimec.

unitn.it/composes/semantic-vectors.html
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Dataset

Method Micro
DEFT
forum

DEFT
news

headlines images
Onto-
WordNet

Tweet
News

Weighted
Mean

Sultan Only (-DF) N 0.456 0.699 0.682 0.790 0.619 0.655 0.607
Sultan Only N 0.419 0.689 0.706 0.800 0.720 0.683 0.644
Sultan + Jacana N 0.430 0.708 0.721 0.808 0.819 0.756 0.673
Sultan + WordSim N 0.423 0.756 0.744 0.816 0.816 0.730 0.676
Sultan + WordSim
+ WordPairs

N 0.434 0.743 0.743 0.825 0.833 0.743 0.689

All aligners N 0.464 0.713 0.732 0.821 0.834 0.733 0.686
All aligners + ESA N 0.490 0.741 0.740 0.841 0.826 0.756 0.699
All aligners + ESA Y 0.554 0.712 0.749 0.836 0.859 0.761 0.737
Sultan + WordSim Y 0.555 0.733 0.747 0.827 0.844 0.753 0.728

Table 1: Pearson’s Correlation achieved by configurations of our system during development on the SemEval 2014 dataset

For each word pair (a, b) where a ∈ A and b ∈ B,
lets consider ~a and~b as neural word embeddings re-
spectively for a and b. Thus, soft alignment can be
defined formally as a matrix S of size na x nb, where
sij = ~a.~b giving similarity between the word vectors.

2.3.2 BiLSTM
Soft alignments based only on the word similar-

ity do not consider the word context in the sentence.
Therefore, with the help of bidirectional recur-
rent neural network (BiRNN), we produce context-
dependent word representations. BiRNN consists
of a forward recurrent neural network (RNN) and a
separate backward RNN to read the sentence in for-
ward and backward directions respectively. Figure 1
shows a BiRNN representation for encoding a sen-
tence. Here, ~ai refers to the pre-trained neural word
embedding, and ~hi refers to the BiRNN representa-
tion for ith word in the sentence, produced by the
concatenation of forward and backward RNN repre-
sentations. The approach being followed here is the
same used in order to produce variable length sen-
tence representation for soft attention mechanism in
neural machine translation (Bahdanau et al., 2014).
However, here we just use the BiRNN representa-
tions of the words for producing the soft alignments.
Such representations can be considered as context-
dependent representation as they carry the sentence
summary at the position of each word. After pro-
ducing the BiRNN representations for both the sen-
tences, we simply compute cosine similarities be-

tween these representations at each word position
across both the sentences, to produce the soft align-
ment matrix. Similarly as above in section 2.3.1, soft
alignment can be defined as a matrix S of size na x
nb, where sij =~h.~g and~h and ~g are the BiRNN based
contextual word representations. We use long short-
term memory (Hochreiter and Schmidhuber, 1997,
LSTM) for our experiments using our own imple-
mentation. For learning the BiLSTM based repre-
sentations, we use a collection of the sentences from
the previous years Semantic Textual Similarity Task.

Figure 1: BiRNN representation for encoding a sentence

2.3.3 Features
In order to apply soft alignment in a machine

learning setting, we wish to transform these align-
ments into a set of features. In particular, these
features should be able to calculate a single value
bounded in some range regardless of the relative size
of the two target sentences. As we generate a non-
square matrix of variable size, we hypothesize that
good alignments should resemble hard alignments.

714



System plagiarism
answer-
answer

postediting headlines
question-
question

All

m5all3 0.80332 0.40165 0.81606 0.75400 0.72228 0.69528
m5dom1 0.75539 0.41211 0.80086 0.76778 0.69782 0.68368
m5dom2 0.74351 0.38303 0.76549 0.76485 0.57263 0.64520

Median 0.78949 0.48018 0.81241 0.76439 0.57140 0.68923
Best system on dataset 0.84138 0.69235 0.86690 0.82749 0.74705 0.77807

Table 2: Official results from SemEval, giving Pearson’s correlation on each dataset

For hard alignments, we used the number of rows
(i.e., tokens) that had at least one alignment, thus for
the soft alignment we used the row max of the align-
ment as follows:

mφ =

∑
i=1...na

maxj=1...nb
|αij |φ∑

j=1...nb
αφij

na

For out experiments we calculated four features
with the following values of φ = 0.1, 0.5, 1, 2.

In addition, we experimented with other sparsity
features proposed by Hurley and Rickard (2009) and
included the HG metric and a modified version of
the −lp metric we call col-lp as they gave good cor-
relations with the sentence scores.

HG = −∑
i=1,...,na;j=1,...,nb

logα2
ij

−lp = (
∑

i=1,...,na;j=1,...,nb
αpij)

1
p

col-lp =

∑
i=1,...,na

(
∑
j=1,...,nb

αpij)
1
p

na

We used p = 2, 10 to give two features for col−lp.
Finally, we noted that in many cases the most im-

portant alignments were those between low frequen-
cies word, therefore we transformed our alignments
by multiplying them with the inverse document fre-
quency of the words, e.g.,

α′
ij =

αij
df(ai)df(bj)

2.4 ESA Similarity

Gabrilovich and Markovitch (2007) introduced the
ESA model that represents the semantics of a word

with a distributional vector over the Wikipedia con-
cepts. We use a snapshot of English Wikipedia from
1st October, 2013 which contains 13.9 million arti-
cles (concepts). We built an index of all Wikipedia
articles using Lucene. We retrieve distributional
vector of a sentence by searching over a Lucene in-
dex. Thus, a Lucene ranking score represents the
magnitude of a vector dimension that corresponds
to a retrieved Wikipedia article. We used Lucene’s
built-in scoring function to obtain the topK = 1000
articles and then to obtain the semantic relatedness
between two sentences, we compute cosine similar-
ity between their distributional vectors.

2.5 Classifying with M5 Trees
Finally, having baseline features, extracted features
from the hard and soft alignments, and the ESA sim-
ilarity, we combine all of our features into a single
vector and thus transform the problem into that of a
traditional regression task. We experimented with
various classifiers using the Weka toolkit (Hall et
al., 2009) and found that in nearly all experiments,
the strongest performance was obtained using the
M5 Decision Tree method (Wang and Witten, 1996;
Quinlan, 1992) and so we adopted this for all our
experiments.

3 Evaluation

3.1 Internal Evaluation
We conducted a series of evaluations using data from
previous SemEval challenges (Agirre et al., 2014)
as a baseline as shown in Table 1. These results
present the following configurations using 10-fold
cross-validation:

Sultan Only (-DF) Using baseline features, which
are also used in all experiments, and Sultan et
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al.’s (2014a) aligner. Without accounting for
term document frequency (see Section 2.3.3)

Sultan Only As above only with document fre-
quency included as a feature

Sultan + Jacana Including the Jacana aligner (Sec-
tion 2.2)

Sultan + WordSim Including the WordSim fea-
tures (Section 2.3.3)

Sultan + WordSim + WordPairs Including key-
pairs features (Section 2.3.3)

All aligners Using Sultan, Jacana, WordSim and
BiLSTM aligners

All aligners + ESA Also including the ESA
method (Section 2.4)

In addition, we noticed that different datasets
tended to have a different distribution of scores.
As such we tried evaluating in two modes macro-
training where we trained the decision tree on all
datasets simultaneously and microtraining where a
decision tree was trained for each dataset and used
only for this dataset. As the microtraining results
are much stronger, for the task, we developed a
lightweight domain classifier that found the nearest
training dataset to the test dataset and used the clas-
sifier trained on the most appropriate dataset in our
evaluation runs. This classifier used the size of the
intersection of the set of 100 most frequent words in
each dataset and we obtained 100% accuracy for this
classifier in identifying datasets by 10-fold cross-
validation, i.e., we choose the classifier trained on
the training set T which maximizes the following
similarity to the test set T ′:

|top100words(T ) ∩ top100words(T ′)|

3.2 SemEval results
We submitted three runs to the SemEval task and
the results are reported in Table 2, the configurations
were as follows:

m5all3 This run uses all the aligners (Sultan, Ja-
cana, WordSim) including ESA, and trains a
single decision tree on all datasets simultane-
ously, without using the domain classifier.

m5dom1 This run uses Sultan, WordSim as align-
ers including ESA, and trains a decision tree
per test dataset on the nearest training datasets
using the domain classifier.

m5dom2 This run uses all the aligners including
ESA, and trains a decision tree per test dataset
on the nearest training dataset using the domain
classifier.

We notice that our system has above-median per-
formance in most datasets however, we have signif-
icant difficulties in the answer-answer, this is be-
cause of the length and complexity of the sentences.
We also see that while the domain classifier was
helpful in a few cases, notably the headlines, it did
not in general seem to improve the results. Finally,
we find that the combination of all classifiers was
helpful.

4 Conclusion

We propose a combination of different approaches
and our internal results suggest that combining mul-
tiple approaches can improve overall system perfor-
mance. However, we notice that for some datasets
performance is still very low and we hypothesise
that in this case a new approach is needed. We no-
tice that adapting to the domain proved extremely
effective in the cross-fold setting but not in the gen-
eral case, however our proposed method was very
simplistic and further improvement in the quality of
the result may be achieved by a more sophisticated
algorithm.
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