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Abstract

We present our UWB system for Seman-
tic Textual Similarity (STS) task at SemEval
2016. Given two sentences, the system esti-
mates the degree of their semantic similarity.
We use state-of-the-art algorithms for the
meaning representation and combine them
with the best performing approaches to STS
from previous years. These methods benefit
from various sources of information, such as
lexical, syntactic, and semantic.

In the monolingual task, our system achieve
mean Pearson correlation 75.7% compared
with human annotators. In the cross-lingual
task, our system has correlation 86.3% and is
ranked first among 26 systems.

1 Introduction

Semantic Textual Similarity (STS) is one of the
core disciplines in Natural Language Processing
(NLP). Assume we have two textual fragments
(word phrases, sentences, paragraphs, or full doc-
uments), the goal is to estimate the degree of their
semantic similarity.

STS systems are usually compared with the man-
ually annotated data. In the case of SemEval the data
consist of pairs of sentences with a score between 0
and 5 (higher number means higher semantic simi-
larity). For example, English pair

Two dogs play in the grass.
Two dogs playing in the snow.

has a score 2.8, i.e. the sentences are not equivalent,
but share some information.
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This year, SemEval’s STS is extended with the
Spanish-English cross-lingual subtask, where e.g.
the pair
Tuve el mismo problema que tu.

I had the same problem.

has a score 4.8, which means nearly equivalent.

Each year STS belongs to one of the most pop-
ular tasks at SemEval competition. The best STS
system at SemEval 2012 (Bér et al., 2012) used lexi-
cal similarity and Explicit Semantic Analysis (ESA)
(Gabrilovich and Markovitch, 2007). In SemEval
2013, the best model (Han et al., 2013) used se-
mantic models such as Latent Semantic Analysis
(LSA) (Deerwester et al., 1990), external informa-
tion sources (WordNet) and n-gram matching tech-
niques. For SemEval 2014 and 2015 the best sys-
tem comes from (Sultan et al., 2014a; Sultan et al.,
2014b; Sultan et al., 2015). They introduced new
algorithm, which align the words between two sen-
tences. They showed that this approach can be effi-
ciently used also for STS. Overview of systems par-
ticipating in previous SemEval competitions can be
found in (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014; Agirre et al., 2015).

The best performing systems from previous years
are based on various architectures benefiting from
lexical, syntactic, and semantic information. In this
work we try to use the best techniques presented dur-
ing last years, enhance them, and combine into a sin-
gle model.

2 Semantic Textual Similarity

This section describes various techniques for esti-
mating the text similarity.
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2.1 Lexical and Syntactic Similarity

This section presents the techniques exploiting lexi-
cal and syntactic information in the text. Some of
them have been successfully used by (Bér et al.,
2012). Many of the following techniques benefit
from the weighing of words in a sentence using Term
Frequency - Inverse Document Frequency (TF-IDF)
(Manning and Schiitze, 1999).

o Lemma n-gram overlaps: We compare word
n-grams in both sentences using Jaccard Simi-
larity Coefficient (JSC) (Manning and Schiitze,
1999). We do it separately for different or-
ders n € {1,2,3,4}. Containment Coefficient
(Broder, 1997) is used for orders n € {1,2}.
We extend original metrics by weighing of n-
grams. We define this weight as a sum of IDF
values of words in n-gram. N-gram match
is not counted as 1 but as the weight of this
n-gram. According to our experiments, this
weighing significantly improves performance.

We also use information about the length of
Longest Common Subsequence compared to
the length of the sentences.

e POS n-gram overlaps: In similar way as for
lemmas, we calculate Jaccard Similarity Co-
efficient and Containment Coefficient for n-
grams of part-of-speech (POS) tags. Again,
we use n-gram weighing and n € {1,2,3,4}.
These features exploit syntactic similarity of
the sentences.

e Character n-gram overlaps: Similarly to
lemma or POS n-grams, we use Jaccard Sim-
ilarity Coefficient and Containment Coefficient
for comparing common substrings in both sen-
tences. Here the IDF weights are computed on
character n-gram level. We use n-gram weigh-
ingandn € {2,3,4,5}.

We enrich these features also by Greedy String
Tiling(Wise, 1996) allowing to deal with re-
ordered text parts and by Longest Common
Substring (LCS) measuring the ration between
LCS and length of the sentences.

e TF-IDF: For each word in a sentence we calcu-
late TF-IDF. Given the word vocabulary V, the
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sentence is represented as a vector of dimen-
sion |V | with TF-IDF values of words present
in the sentence. The similarity between two
sentences is expressed as cosine similarity be-
tween corresponding TF-IDF vectors.

2.2 Semantic Similarity

In this section we describe in detail the techniques
that are more semantically oriented and are based
on Distributional Hypothesis. This principle states
that we can induce (to some degree) the mean-
ing of words from their distribution in the text.
This claim has multiple theoretical roots in psychol-
ogy, structural linguistics, or lexicography (Firth,
1957; Rubenstein and Goodenough, 1965; Miller
and Charles, 1991).

e Semantic composition: This approach is
based on Frege’s principle of compositional-
ity, which states that the meaning of a com-
plex expression is determined as a compo-
sition of its parts, i.e. words. To repre-
sent the meaning of a sentence we use sim-
ple linear combination of word vectors, where
weights are represented by the TF-IDF values
of appropriate words. We use state-of-the-art
word embedding methods, namely Continuous
Bag of Words (CBOW) (Mikolov et al., 2013)
and Global Vectors (GloVe) (Pennington et al.,
2014). We use cosine similarity to compare
vectors.

e Paragraph2Vec: Paragraph vectors were pro-
posed in (Le and Mikolov, 2014) as an unsuper-
vised method of learning text representation.
Resulting feature vector has fixed dimension
while the input text can be of any length. The
paragraph vectors and word vectors are con-
catenated to predict the next word in a context.
The paragraph token acts as a memory that re-
members what information is missing from the
current context. We use cosine similarity for
comparing two paragraph vectors.

e Tree LSTM: Long Short-Term Memory
(LSTM) is a type of Recurrent Neural Network
(RNN) with a complex computational unit. We
use tree-structured representation of LSTM
presented in (Tai et al.,, 2015). Tree model



represents the sentence structure. RNN pro-
cesses input sentences of variable length via
recursive application of a transition function
on a hidden state vector h;. For each sentence
pair it creates sentence representations hy, and
hgr using Tree-LSTM model. Given these
representations, model predicts the similarity
score using a neural network considering
distance and angle between vectors.

o Word alignment: Method presented in (Sul-
tan et al., 2014a; Sultan et al., 2014b; Sultan
et al., 2015) has been very successful in last
years. Given two sentence we want to compare,
this method finds and aligns the words that have
similar meaning and similar role in these sen-
tences.

Unlike the original method, we assume that not
all word alignments have the same importance
for the meaning of the sentences. The weight
of a set of words A is a sum of word’s IDF val-

ues w(A) = > IDF(w), where w is a word.
weA
Then the sentence similarity is given by

w(A1) +w(Az)

sim (51,52) = w(S1) —|—w(S’2) )

6]

where S and S5 are input sentences (repre-
sented as sets of words). A and A5 denote the
sets of aligned words for S; and S5, respec-
tively. The weighing of alignments improves
our results significantly.

2.3 Similarity Combination

The combination of STS techniques is in fact a re-
gression problem where the goal is to find the map-
ping from input space x; € R? of d-dimensional
real-valued vectors (each value z; o, where 1 < a <
d represents the single STS technique) to an output
space y; € R of real-valued targets (desired seman-
tic similarity). These mapping are learned from the
training data {x;, yz}fil of size N. There exist a lot
of regression methods. We experiment with several
of them:

e Linear Regression: Linear Regression (LR) is
probably the simplest regression method. It is
defined as y; = Ax;, where A is a vector of
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weights that can be estimated for example by
the least squares method.

e Gaussian processes regression: Gaussian
process regression (GPR) is nonparametric
kernel-based probabilistic model for non-linear
regression (Rasmussen and Williams, 2005).

e SVM Regression: We use Support Vector
Machines (SVM) for regression with the ra-
dial basis functions (RBF) as a kernel. We
use improved Sequential Minimal Optimiza-
tion (SMO) algorithm for parameter estimation
introduce in (Shevade et al., 2000).

e Decision Trees Regression: The output of the
Decision Trees Regression (DTR) (Breiman et
al., 1984) is predicted by the sequence of deci-
sions organized in a tree.

e Perceptron Regression: Multilayer Percep-
tron (MLP) is feed-forward artificial neural net-
work that uses back-propagation to classify in-
stances.

3 System Description

This section describes the settings of our final STS
system. For monolingual STS task we submitted
two runs. First is based on supervised learning and
the second is unsupervised system:

o UWB sup: Supervised system based on SVM
regression with RBF kernel. We use all tech-
niques described in 2 as features for regression.
During the regression we also use the simple
trick. We create another features represented as
a product of each pair of features x; , X x; 5, for
a # b. We do so to better model the depen-
dencies between single features. Together, we
have 301 STS features. The system is trained
on all SemEval datasets from prior years (see
Table 1).

e UWB unsup: Unsupervised system based only
on weighted word alignment (Section 2.2).

We handled with the cross-lingual STS task with
Spanish-English bilingual sentence pairs in two
steps. Firstly, we translated Spanish sentences to En-
glish via Google translator. The English sentences



Corpora Pairs
SemEval 2012 Train 2,234
SemEval 2012 Test 3,108
SemEval 2013 Test 1,500
SemEval 2014 Test 3,750
SemEval 2015 Test 3,000

Table 1: STS gold data from prior years.

News Multi-\ an RR TR

Source
UWRB sup 0.9062 0.8190 0.8631 1 1
UWB unsup 0.9124 0.8082 0.8609 2 1

Table 4: Pearson correlations on cross-lingual STS
task of SemEval 2016. RR denote the run (system)
ranking and 7R denote our team ranking.

were left untouched. Secondly, we used the same
STS systems as for monolingual task.

For preprocessing pipeline we used Standford
CoreNLP library (Manning et al., 2014), i.e. for to-
kenization, lemmatization and POS tagging. Most
of our STS techniques (apart from word alignment
and POS n-gram overlaps) work with lemmas in-
stead of word forms (this leads to slightly better
performance). Some of our STS techniques are
based on unsupervised learning and thus they need
large unannotated corpora to train. We trained Para-
graph2Vec, GloVe and CBOW models on One bil-
lion word benchmark presented in (Chelba et al.,
2014). Dimension of vectors for all these models
was set to 300. TF-IDF values were also estimated
on this corpus.

All regression methods mentioned in Section 2.3
are implemented in WEKA (Hall et al., 2009).

4 Results and Discussion

This section presents the results of our systems
for both English monolingual and Spanish-English
cross-lingual STS task of SemEval 2016. In addi-
tion we present detailed results on the test data from
SemEval 2015. As an evaluation measure we use
Pearson correlation between system output and hu-
man annotations.

In the tables we present the correlation for each
individual test set. Column Mean represents the
weighted sum of all correlations, where the weight
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are given by the ratio of data set length compared
to the full length of all datasets together. The mean
value of Pearson correlations is also used as the main
evaluation measure for ranking the system submis-
sions.

In the Table 2 we show the results for the test data
from 2015. We trained our systems on SemEval STS
data from years 2012-2014. We provide compari-
son of individual STS techniques as well as of dif-
ferent types of regressions. Clearly, the SVM regres-
sion and Gaussian processes regression perform best
and with our feature set it is 1% better than the win-
ning system of SemEval 2015. The best performing
single technique is indisputably the weighed word
alignment correlated by 79.6% with gold data. Note
that without weighing, we achieved only 74.2% on
this data. The original result from authors of this
approach was, however, 79.2%. This is probably
caused by some inaccuracies in our implementation.
Anyway, the weighing improves the correlation even
if we compare it to the original results. Note that
for estimating regression parameters we use the data
from all years apart from 2015 (see Table 1).

The results for monolingual STS task of SemEval
2016 are shown in Table 3. In the time of writing
this paper the ranks of submitted systems were not
known. Thus we present only our correlations. We
can see that our supervised system (SVM regres-
sion) performs approximately 3% better than the un-
supervised one (weighed word alignment). On the
data from SemEval 2015 this difference was not so
significant (approximately 1.5%).

Finally, the results for cross-lingual STS task of
SemEval 2016 are shown in Table 4. We achieved
very high correlations. To be honest we must say
that we expected much lower correlation through the
fact that we use the machine translation via Google
translator causing certainly some inaccuracies (at
least in the syntax of the sentence). On the other
hand, it proves that our model efficiently generalizes
the learned patterns. Here, there is almost no differ-
ence in performance between supervised and unsu-
pervised version of submitted systems. Our submit-
ted runs finished first and second among 26 compet-
ing systems.



Model \ Corpora Answers-  Answers- Belief Headlines Images Mean
forums  students
Winner of SemEval 2015 0.7390 0.7725  0.7491 0.8250 0.8644  0.8015
Linear regression — all lexical 0.7053 0.7656  0.7190 0.7887 0.8246  0.7728
Linear regression — all syntactic ~ 0.3089 0.3165  0.4570 0.2900 0.1862  0.2939
Tf-idf 0.5629 0.6043  0.6762  0.6603 0.7530  0.6593
Tree LSTM 0.4181 0.5490  0.5863 0.7324 0.8168 0.6501
Paragraph2Vec 0.5228 0.7017  0.6643 0.6562 0.7385 0.6725
CBOW composition 0.6216 0.6846  0.7258 0.6927 0.7831 0.7085
GloVe composition 0.5820 0.6311  0.7164  0.6969 0.7972  0.6936
Weighted word alignment 0.7171 0.7752  0.7632 0.8179 0.8525 0.7964
Linear regression 0.7411 0.7589  0.7739 0.8193 0.8568  0.7982
Gaussian processes regression 0.7363 0.7701 0.7846 0.8393 0.8749  0.8112
Decision trees regression 0.6700 0.6991 0.7281 0.7792 0.8206  0.7495
Perceptron regression 0.7060 0.7481 0.7467 0.8093 0.8594 0.7858
SVM regression 0.7375 0.7678  0.7846  0.8398 0.8776 0.8116

Table 2: Pearson correlations on SemEval 2015 evaluation data and comparison with the best performing

system in this year.

Model \ Corpora Answer- Headlines Plagiarism Postediting Questl.on- Mean
answer question

UWB sup 0.6215 0.8189 0.8236 0.8209 0.7020  0.7573

UWB unsup 0.6444 0.7935 0.8274 0.8121 0.5338  0.7262

Table 3: Pearson correlations on monolingual STS task of SemEval 2016.

5 Conclusion

In this paper we described our UWB system par-
ticipating in SemEval 2016 competition in the task
of Semantic Textual Similarity. We participated on
both monolingual and cross-lingual parts of compe-
tition.

Our best results have been achieved by SVM re-
gression of various STS techniques based on lexical,
syntactic, and semantic information. This approach
has been shown to work well for both subtasks.
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