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Abstract

The final goal of Interpretable Semantic Tex-
tual Similarity (iSTS) is to build systems that
explain which are the differences and com-
monalities between two sentences. The task
adds an explanatory level on top of STS, for-
malized as an alignment between the chunks
in the two input sentences, indicating the re-
lation and similarity score of each alignment.
The task provides train and test data on three
datasets: news headlines, image captions and
student answers. It attracted nine teams, total-
ing 20 runs. All datasets and the annotation
guideline are freely available1

1 Introduction

Semantic Textual Similarity (STS) (Agirre et al.,
2015) measures the degree of equivalence in the un-
derlying semantics of paired snippets of text. The
idea of Interpretable STS (iSTS) is to explain why
two sentences may be related/unrelated, by supple-
menting the STS similarity score with an explana-
tory layer.

Our final goal would be to enable interpretable
systems, that is, systems that are able to explain
which are the differences and commonalities be-
tween two sentences. For instance, let’s assume
the following two sentences drawn from a corpus of
news headlines:

12 killed in bus accident in Pakistan
10 killed in road accident in NW Pakistan

∗* Authors listed in alphabetical order
1http://at.qrci.org/semeval2016/task2/

The output of such a system would be something
like the following:

The two sentences talk about accidents
with casualties in Pakistan, but they dif-
fer in the number of people killed (12 vs.
10) and level of detail: the first one speci-
fies that it is a bus accident, and the second
one specifies that the location is NW Pak-
istan.

While giving such explanations comes naturally
to people, constructing algorithms and computa-
tional models that mimic human level performance
represents a difficult Natural Language Understand-
ing (NLU) problem, with applications in dialogue
systems, interactive systems and educational sys-
tems.

In the iSTS 2015 pilot task (Agirre et al., 2015),
we defined a first step of such an ambitious system,
which we follow in 2016. Given the input (a pair of
sentences), participant systems need first to identify
the chunks in each sentence, and then, align chunks
across the two sentences, indicating the relation and
similarity score of each alignment. The relation can
be one of equivalence, opposition, specificity, sim-
ilarity or relatedness, and the similarity score can
range from 1 to 5. Unrelated chunks are left un-
aligned. An optional tag can be added to alignments
for the cases where there is a difference in factuality
or polarity. See Figure 1 for the manual alignment of
the two sample sentences. The alignments between
chunks in Figure 1 can be used to produce the kind
of explanations shown in the previous example.

In previous work, Brockett (2007) and Rus et
al. (2012) produced a dataset where corresponding
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[12] <=> [10] : (SIMILAR 4)
[killed] <=> [killed] : (EQUIVALENT 5)
[in bus accident] <=> [in road accident] : (MORE-SPECIFIC 4)
[in Pakistan] <=> [in NW Pakistan] : (MORE-GENERAL 4)

Figure 1: Example of a manual alignment of two sentences: “12 killed in bus accident in Pakistan” and “10 killed in road accident

in NW Pakistan”. Each aligned pair of chunks included information on the type of alignment, and the score of alignment.

words (including some multiword expressions like
named-entities) were aligned. Although this align-
ment is useful, we wanted to move forward to the
alignment of segments, and decided to align chunks
(Abney, 1991). Brockett (2007) did not provide any
label to alignments, while Rus et al. (2012) defined
a basic typology. In our task, we provided a more
detailed typology for the aligned chunks as well
as a similarity/relatedness score for each alignment.
Contrary to the mentioned works, we first identified
the segments (chunks in our case) in each sentence
separately, and then aligned them.

In a different strand of work, Nielsen et al.
(2009) defined a textual entailment model where the
“facets” (words under some syntactic/semantic rela-
tion) in the response of a student were linked to the
concepts in the reference answer. The link would
signal whether each facet in the response was en-
tailed by the reference answer or not, but would not
explicitly mark which parts of the reference answer
caused the entailment. This model was later fol-
lowed by Levy et al. (2013). Our task was differ-
ent in that we identified the corresponding chunks
in both sentences. We think that, in the future, the
aligned facets could provide complementary infor-
mation to chunks.

The SemEval Semantic Textual Similarity (STS)
task in 2015 contained a subtask on Interpretable
STS (Agirre et al., 2015), showing that the task is
feasible, with high inter-annotator agreement and
system scores well above baselines. The datasets
comprised news headlines and image captions.

For 2016, the pilot subtask has been updated into
a standalone task. The restriction from the iSTS
2015 task to allow only one-to-one alignments has
been now lifted, and we thus allow any number of
chunks to be aligned to any number of chunks. An-
notation guidelines have been revised accordingly,
including an updated chunking criterium for subor-
dinate clauses and a better explanation of the instruc-

tions.
The 2015 datasets were re-annotated and released

as training data. New pairs from news headlines
and image captions have been annotated and used
for test. In addition, a new dataset of sentence pairs
from the education domain has been produced, in-
cluding train and test data.

The paper is organized as follows. We first pro-
vide the description of the task, followed by the eval-
uation metrics and the baseline system. Section 5
describes the participation, Section 6 the results, and
Section 7 comments on the systems, tools and re-
sources used.

2 Task Description

The dataset was produced using sentence pairs from
news headlines, image captions and answers from
students. Headlines have been mined from several
news sources by European Media Monitor, and col-
lected by us using their RSS feed2. We saw a pair of
headlines from this corpus in the introduction.

The Image descriptions dataset is a subset of the
Flickr dataset presented in (Rashtchian et al., 2010),
which consisted of 8108 hand-selected images from
Flickr, depicting actions and events of people or an-
imals, with five captions per image. The image cap-
tions of the dataset are released under a Creative
Commons Attribution-Share Alike license. This is
a sample pair from this dataset:

A man sleeps with a baby in his lap
A man asleep in a chair holding a baby

The Answer-Students corpus consists of the in-
teractions between students and the BEETLE II tu-
torial dialogue system. The BEETLE II system is
an intelligent tutoring engine that teaches students
in basic electricity and electronics. At first, students

2http://emm.newsexplorer.eu/NewsExplorer/home/en/latest.html
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dataset pairs source STS
HDL train 750 news headlines 2013
HDL test 375 news headlines 2014
Images train 750 image captions 2014
Images test 375 image captions 2015
Student train 333 student answers 2015
Student test 344 student answers 2015

Table 1: Details of the datasets, including number of pairs,

source, and relation to STS datasets. HDL stands for Headlines,

and Student to Student-Answers.

spend from three to five hours reading the mate-
rial, building and observing circuits in the simulator
and interacting with a dialogue-based tutor. They
used the keyboard to interact with the system, and
the computer tutor asked them questions and pro-
vided feedback via a text-based chat interface. The
data from 73 undergraduate volunteer participants at
south-eastern US university were recorded and an-
notated to form the BEETLE human-computer dia-
logue corpus (Dzikovska et al., 2010; Dzikovska et
al., 2012), and later used in a SemEval 2015 task
(Dzikovska et al., 2013). In the present corpus, we
include sentence pairs composed of a student answer
and the reference answer of a teacher. We have re-
jected those answers containing pronouns whose an-
tecedent is not in the sentence (pronominal corefer-
ence), as the question is not included in the train data
and, therefore, it is not possible to deduce which is
the antecedent. There are also some dataset-specific
details that are mentioned in the same section. The
next pair sentences are an example of the Answer-
Students corpus.

because switch z is in bulb c’s closed path
there is a path containing both Z and C

All datasets have been previously used in STS
tasks. Table 1 shows details of the datasets, in-
cluding train-test splits. The Headlines and Images
datasets are tokenized, as in the STS release. The
Answer-Students dataset was not tokenized, and was
used as in the STS release.

2.1 Annotation
The manual annotation has been performed follow-
ing the annotation guidelines 3. Please refer to those

3http://alt.qcri.org/
semeval2016/task2/data/uploads/

guidelines for further details. The general annota-
tion procedure is as follows:

1. First identify the chunks in each sentence sepa-
rately.

2. Align chunks in order, from the clearest and
strongest correspondences to the most unclear
or weakest ones.

3. For each alignment, provide a similarity/relat-
edness score.

4. For each alignment, choose one (or more)
alignment label.

Chunk annotation was based on those used in the
CoNLL 2000 chunking task (Tjong Kim Sang and
Buchholz, 2000). The annotators were provided
with the output of an automatic chunker4 trained on
the CoNLL corpora5, which they corrected manu-
ally.

Independently of the labels, and before assigning
any label, the annotators need to provide a similari-
ty/relatedness score for each alignment from 5 (max-
imum similarity/relatedness) to 0 (no relation at all),
as follows:

5 if the meaning of both chunks is equivalent

[4,3] if the meaning of both chunks is very similar
or closely related

[2,1] if the meaning of both chunks is slightly sim-
ilar or somehow related

0 (represented as NIL) if the meaning of the chunk
is completely unrelated.

Note that 0 is not possible for an aligned pair, as
that would mean that the two chunks would be left
unaligned. Note also that if the score is 5, then the
label assigned later should be equivalence (EQUI,
see below). After assigning the label, the annota-
tor should check for the following: if a chunk is not
aligned it should have NIL score, equivalent chunks

annotationguidelinesinterpretablests2016v2.
2.pdf

4https://github.com/ixa-ehu/
ixa-pipe-chunk

5http://www.clips.ua.ac.be/conll2000/
chunking/
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(EQUI) should have a 5 score. The rest of the labels
should have a score larger than 0 but lower than 5.

We will now describe the alignment types, but
first note that the interpretation of the whole sen-
tence, including common sense inference, has to be
taken into account. This means that we need to take
into account the context in order to know whether
the aligned chunks refer to the same instance (or set
of instances) or not. Instances may refer to physical
or abstract object instances (for NPs) or real world
event instances (for verb chains):

• EQUI: both chunks have the same meaning,
they are semantically equivalent in this context.

• OPPO: the meanings of the chunks are in op-
position to each other, lying in an inherently
incompatible binary relationship.

• SPE1: both chunks have similar meanings, but
chunk in sentence 1 is more specific.

• SPE2: like SPE1, but it is the chunk in sentence
2 which is more specific.

In addition, the meaning of the chunks can be very
close, either because they have a similar meaning, or
because their meanings have some other relation. In
those cases, we use SIMI or REL as follows:

• SIMI: both chunks have similar meanings, they
share similar attributes and there is no EQUI,
OPPO, SPE1 or SPE2 relation.

• REL: both chunks are not considered similar
but they are closely related by some relation not
mentioned above (i.e. no EQUI, OPPO, SPE1,
SPE2, or SIMI relation).

• NOALI: this chunk has not any corresponding
chunk in the other sentence. Therefore, it is left
unaligned.

The above seven labels are exclusive, and each
alignment should have one such label.

In addition to one of the labels above, there are
two labels which can be used either in isolation or
together, that is, you can use none, one or both:

• FACT: the factuality in the aligned chunks (i.e.
whether the statement is or is not a fact or a
speculation) is different.

• POL: the polarity in the aligned chunks (i.e. the
expressed opinion, which can be positive, neg-
ative, or neutral) is different.

Note that NOALI can also be FACT or POL,
meaning that the respective chunk adds a factuality
or polarity nuance to the sentence.

Listing 1 shows the annotation format for a given
sentence pair from the training set (note that each
alignment is reported in one line as follows: token-
id-sent1 <==> token-id-sent2 // label // score //
comment).

Finally, there are some specific criteria related to
the Answer-Students corpus that have been followed
during the annotation process. For instance, in the
Answer-Students example in the previous section,
switch z (first sentence) and Z (second sentence) are
considered equivalent as, in this dataset, X, Y, and
Z always refer to switches X, Y, and Z. The same
criteria is followed when annotating bulb c and C as
equivalent, as A, B and C are always used to refer
to bulb A, B and C. In the same way closed path
and a path are equivalent, as paths are always con-
sidered to be closed. For further details related to
such a corpus specific criteria refer to the annotation
guidelines.

3 Evaluation Metrics

The official evaluation is based on (Melamed, 1998),
which uses the F1 of precision and recall of token
alignments (in the context of alignment for Machine
Translation). Fraser and Marcu (2007) argue that F1
is a better measure than other alternatives such as the
Alignment Error Rate. The idea is that, for each pair
of chunks that are aligned, we consider that any pairs
of tokens in the chunks are also aligned with some
weight. The weight of each token-token alignment
is the inverse of the number of alignments of each to-
ken (so-called fan out factor, Melamed, 1998). Pre-
cision is measured as the ratio of token-token align-
ments that exist in both system and gold standard
files, divided by the number of alignments in the
system. Recall is measured similarly, as the ratio
of token-token alignments that exist in both system
and gold-standard, divided by the number of align-
ments in the gold standard. Precision and recall are
evaluated separately for all alignments of all pairs.

Participating runs were evaluated using four dif-
ferent metrics: F1 where alignment type and score
are ignored (alignment F1, F for short); F1 where
alignment types need to match, but scores are ig-
nored (type F1, +T for short); F1 where alignment
type is ignored, but each alignment is penalized
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Listing 1: Annotation format

<s e n t e n c e i d =”6” s t a t u s =””>
12 k i l l e d i n bus a c c i d e n t i n P a k i s t a n
10 k i l l e d i n road a c c i d e n t i n NW P a k i s t a n
. . .
<a l i g n m e n t>

1 <==> 1 / / SIMI / / 4 / / 12 <==> 10
2 <==> 2 / / EQUI / / 5 / / k i l l e d <==> k i l l e d
3 4 5 <==> 3 4 5 / / SPE1 / / 4 / / i n bus a c c i d e n t <==> i n road a c c i d e n t
6 7 <==> 6 7 8 / / SPE2 / / 4 / / i n P a k i s t a n <==> i n NW P a k i s t a n

</ a l i g n m e n t>
</ s e n t e n c e>

when scores do not match6 (score F1, +S for short);
and, F1 where alignment types need to match, and
each alignment is penalized when scores do not
match (type and score F1, +TS for short). The type
and score F1 is the main overall metric.

Note that our evaluation procedure does not ex-
plicitly evaluate the chunking results. The method
implicitly penalizes chunking errors via the induced
token-token alignments, using a soft penalty.

4 Baseline System

The baseline system consists of a cascade concate-
nation of several procedures. First, input sentences
are tokenized using simple regular expressions. Ad-
ditionally, we collect chunks coming either from the
gold standard or from the chunking done by ixa-
pipes-chunk (Agerri et al., 2014). This is followed
by a lower-cased token aligning phase, which con-
sists of aligning (or linking) identical tokens across
the input sentences. Then we use chunk bound-
aries as token regions to group individual tokens into
groups, and compute all links across groups. The
weight of the link across groups is proportional to
the number of links counted between within-group
tokens. The next phase consists of an optimiza-
tion step in which groups x,y that have the high-
est link weight are identified, as well as the chunks
that are linked to either x or y but not with a max-
imum alignment weight (thus enabling us to know
which chunks were left unaligned). Finally, in the

6The penalization is the difference between the scores di-
vided by five.

last phase, the baseline system uses a rule-based
algorithm to directly assign labels and scores: to
chunks with the highest link weight assign label =
“EQUI” and score = 5, to the rest of aligned chunks
(with lower weights) assign label = “NOALI” and
score = NIL, and, to unaligned chunks assign label
= “NOALI” and score = NIL.

5 Participation

The pilot task presented two scenarios: raw text and
gold standard chunks. In the first scenario, given
a pair of sentences, participants had to identify the
composing chunks, and then align them; after that
they would assign a relatedness tag and a similarity
score to each alignment. In the gold standard sce-
nario, participants were provided with the gold stan-
dard chunks.

In both scenarios the datasets were provided with
tokenized text, with exception of Answer-Students,
which was not tokenized7.

The task allowed up to a total of three submissions
for each team on each of the evaluation scenarios.
The organizers provided a script to check if the run
files are well formed.

Nine teams participated on the gold chunks sce-
nario, and out of them six teams also participated in
the system chunks scenario. Regarding the datasets,
all the teams gave their results for the three datasets,

7In fact The Answer-Students dataset was only partially to-
kenized. In order to be consistent with the gold standard, partic-
ipants had to follow the partial tokenization, separating tokens
at blanks alone.
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except Venseseval who sent results only for Head-
lines and Images.

The iUBC team includes some of the organizers
of the interpretable STS task. It is marked by the
symbol ∗ in the result tables, and it is not taken into
account in the rankings. The organizers took mea-
sures to prevent developers of that team to access
the test data or any other information, so the team
participated in identical conditions to the rest of par-
ticipants.

6 Results

Table 2 provides the overall type and score (+TS)
performance per dataset, and the mean accross the
three datasets. Results for Headlines, Images and
Answer-Students datasets are shown in the Ap-
pendix, tables 3, 4 and 5, respectively. Each row of
the tables corresponds to a run configuration named
TeamID RunID. Note that task results are separately
written with respect to the scenario. A unique base-
line was used for both evaluation scenarios and its
performance is jointly presented with the scores ob-
tained by participants.

The results of the present edition corroborate last
years’ results regarding the difficulty of the system
chunks scenario. Indeed, it is considerably more
challenging than the gold chunks scenario.

With regard to the datasets, the Answer-Students
ended up being more challenging than the other
datasets for five out of eight teams, but FBK-HLT-
NLP, IISCNLP and iUBC teams give their best re-
sults for such a scenario.

Compared to last year, the best results for Im-
ages and Headlines in the +TS metric have improved
in both SYS and GS scenarios: 4 and 6 points for
Headlines (in SYS and GS, respectively), and 5 and
7 points for Images (in SYS and GS, respectively).
In order to check whether the datasets where easier
this year, we checked the performance of the base-
line. The differences are small: this year the Images
dataset seems slightly easier (3 and 4 point differ-
ence for SYS and GS scenarios), and the Headlines
dataset is only slightly more difficult (1 point differ-
ence for SYS and GS scenarios). The improvement
in results for this year seems to be due to better sys-
tem performance.

The complexity of the evaluation (cf. tables 3, 4

and 5) was incremental for the four available met-
rics, which obviously, were lower for the system
chunks. Both type and score are bounded by the
alignment results and it is thus natural that align-
ment results are higher. Comparing type and score
results, the type results are generally lower, possibly
due to the harder task of guessing the correct label.
The final results are bounded by both type and score,
and the systems doing best in type are the ones do-
ing best overall. From the results we can see that
labeling the type was the most challenging.

Regarding the overall test results for type and
score (+TS) across datasets, UWB (Konopı́k et al.,
2016) and DTSim (Banjade et al., 2016) obtained
the best results for the gold chunks scenario, and DT-
Sim and FBK-HLT-NLP (Magnolini et al., 2016) for
the system chunks scenario. In addition, DTSim ob-
tained the best overall results even though they have
not good results for the Answer-Students dataset.

7 Systems, tools and resources

Most of the teams reported input text processing
such as lemmatization and part of speech tagging,
and in some cases named-entity recognition and syn-
tactic parsing. Additional resources such as Word-
Net, distributional embeddings, paraphrases from
PPDB and global STS sentence scores were also
used. Participants also revealed that most of their
systems were built using some kind of distribu-
tional or knowledge-based similarity metrics. We
noticed, for instance, that WordNet or word embed-
dings were used by several teams to compute word
similarity.

Looking at the learning approaches, both super-
vised and unsupervised approaches have been ap-
plied, as well are mainly manual rule-based combi-
nations.

Next, we briefly introduce the participant teams,
whit slightly more details for the top performing sys-
tems.

• UWB (Konopı́k et al., 2016): UWB used three
separate supervised classifiers to perform align-
ment, scoring and typing. They defined a simi-
larity function based on a distribution similarity
paradigm: vector composition, lexical seman-
tic vectors and iDF weighting. They introduced
a modified method to create word vectors, and
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+TS Syschunks +TS Goldchunks
System I H AS Mean R System I H AS Mean R
Baseline .404 .438 .443 .428 Baseline .480 .546 .557 .528
DTSim r3 .610 .545 .503 .552 1 UWB r1 .667 .621 .625 .638 1
DTSim r2 .599 .547 .507 .551 2 UWB r3 .671 .630 .611 .637 2
DTSim r1 .587 .538 .505 .543 3 DTSim r2 .636 .649 .546 .610 3
FBK-HLT-NLP r1 .548 .510 .542 .533 4 DTSim r3 .648 .641 .537 .609 4
FBK-HLT-NLP r3 .535 .505 .555 .532 5 Inspire r1 .613 .696 .510 .606 5
FBK-HLT-NLP r2 .497 .503 .541 .513 6 DTSim r1 .624 .639 .543 .602 6
Inspire r1 .563 .520 .452 .512 7 Inspire r2 .588 .663 .479 .576 7
IISCNLP r2 .487 .492 .520 .500 8 VRep r3 .547 .597 .580 .575 8
IISCNLP r3 .474 .469 .545 .496 9 VRep r2 .543 .597 .579 .573 9
IISCNLP r1 .474 .469 .540 .494 10 FBK-HLT-NLP r3 .566 .562 .589 .572 10
Inspire r2 .536 .495 .419 .483 11 FBK-HLT-NLP r1 .574 .559 .581 .571 11
Inspire r3 .450 .446 .338 .411 12 UWB r2 .621 .601 .475 .566 12
Venseseval r1 .462 .453 - - IISCNLP r2 .509 .556 .617 .560 13
∗iUBC r2 .550 .476 .559 .528 IISCNLP r1 .485 .551 .639 .558 14
∗iUBC r3 .516 .498 .559 .524 IISCNLP r3 .492 .541 .639 .557 15
∗iUBC r1 .477 .423 .449 .450 VRep r1 .548 .596 .523 .556 16
AVG .525 .499 .497 .510 FBK-HLT-NLP r2 .525 .555 .571 .551 17
MAX .610 .547 .555 .552 Rev r1 .493 .562 .410 .489 18

Inspire r3 .487 .579 .386 .484 19
Venseseval r1 .574 .573 - -
∗iUBC r2 .612 .587 .644 .614
∗iUBC r3 .578 .592 .644 .604
∗iUBC r1 .513 .505 .499 .506
AVG .570 .598 .549 .573
MAX .671 .696 .639 .638

Table 2: Overall test results for type and score (+TS) across datasets. Each row correspond to a system run, and each column to a

dataset: (I) for Images, (H) for Headlines, (AS) for Answer-Students, Mean for the mean across the three datasets, and R for the

rank. The “∗” symbol denotes runs that include task organizers. Additionally, the table shows results for the baseline, average of

participants (AVG) and maximum score of participants (MAX).

combine unique words from the chunks of both
sentences into one single vocabulary which is
then used to produce similarity measures. They
claim that the following three differences have
significant influence on the final results: modi-
fied lexical semantic vectors (+3% of the mean
of T+S F1 scores), shared words (+2%) and
POS tags difference (+2%).

• DTSim (Banjade et al., 2016): This team builds
on the NeroSim system (Banjade et al., 2015),
which participated in the 2015 task with good
results using a system based on manual rules
blended semantic similarity features. The team
explored several chunking algorithms and in-

cluded new rules. Concretely, they expanded
the rules for SIMI and EQUI. They mainly im-
proved the chunker and concluded that a Con-
ditional Random Fields (CRFs) based chunking
tool is the best approach for chunking. The in-
put sequence to their chunking model are POS
tags, and the chunker yielded the highest av-
erage accuracies on both the training and test
datasets.

• FBK-HLT-NLP (Magnolini et al., 2016): This
teams built a multi-layer perceptron to solve
alignment, scoring and typing. The percep-
tron shares some layers for the three tasks, and
other layers are separate. They use a variety of
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features, including WordNet and word embed-
dings. The system performs better in the sys-
tem chunks scenario than in the gold chunks
one. Therefore, there is no specific advantage
of using chunked sentence pairs and their sys-
tem is very powerful. The Answer-Students
dataset has better performance than Headlines
and Images. They obtain better results train-
ing a single system for the three datasets (com-
pared to training a classifier separately for each
dataset).

• Inspire (Kazmi and Schüller, 2016): The au-
thors propose a system based on logic program-
ming which extends the basic ideas of NeroSim
(Banjade et al., 2015). The rule based system
makes use of several resources to prepare the
input and uses Answer Set Programming to de-
termine chunk boundaries.

• IISCNLP (Tekumalla and Sharmistha, 2016):
The system uses an algorithm, iMATCH,
for the alignment of multiple non-contiguous
chunks based on Integer Linear Programming
(ILP). Similarity type and score assignment for
pairs of chunks is done using a supervised mul-
ticlass classification technique based on Ran-
dom Forest Classifier.

• Vrep (Henry and Sands, 2016): features are ex-
tracted to create a learned rule-based classifier
to assign a label. It uses semantic and syntactic
(form of the chunks) relationship features.

• Rev (Ping Ping et al., 2016): The system con-
sists of rules based on the analysis of the Head-
lines dataset considering lexical overlapping,
part of speech tags and synonymy.

• Venseseval: This system is an adaptation
of a pre-existing textual entailment system,
VENSES, which first performs a semantic
analysis of the text including argument struc-
ture and then looks for bridging information
between chunks using several knowledge re-
sources.

• iUBC (Lopez-Gazpio et al., 2016): A two layer
architecture is used to produce the similarity
type and score of pairs of chunks. The top
layer consists of two models: a classifier and
a regressor. The bottom layer consists of a re-
current neural network that processes input and
feeds composed semantic feature vectors to the

top layer. Both layers are trained at the same
time by propagating gradients.

8 Conclusions

Last year, the Interpretable STS task was introduced
as a pilot subtask of the STS task. At the present
edition, it has been presented as an independent
task that has attracted nine teams. In addition to
the image caption and news headlines datasets, this
year participants were challenged with a new dataset
from the Educational area. Concretely, the Answer-
Students corpus, which consists of the interactions
between students of electronics and the BEETLE II
tutorial dialogue system.

Compared to the results last year (Agirre et al.,
2015), the results have improved in the two datasets
that happened both years, Images and Headlines.
The Answer-Students dataset is the most challeng-
ing, and among the three subtasks (alignment, type
and score) guessing the correct type of the aligned
chunks is the most difficult one. Teams that did best
on type get the best overall score.

All datasets and the annotation guideline
are available in http://alt.qcri.org/
semeval2016/task2/.
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Headlines Syschunks Headlines Goldchunks
System F +T +S +TS R System F +T +S +TS R
Baseline .649 .438 .591 .438 Baseline .846 .546 .761 .546
DTSim r2 .837 .561 .760 .547 1 Inspire r1 .819 .703 .787 .696 1
DTSim r3 .838 .560 .759 .545 2 Inspire r2 .892 .673 .832 .663 2
DTSim r1 .837 .561 .739 .538 3 DTSim r2 .907 .665 .836 .649 3
Inspire r1 .704 .526 .659 .520 4 DTSim r3 .907 .658 .833 .641 4
FBK-HLT-NLP r1 .808 .523 .737 .510 5 DTSim r1 .907 .665 .819 .639 5
FBK-HLT-NLP r3 .805 .519 .737 .505 6 UWB r3 .899 .641 .838 .630 6
FBK-HLT-NLP r2 .797 .514 .731 .503 7 UWB r1 .898 .632 .835 .621 7
Inspire r2 .759 .503 .691 .495 8 UWB r2 .890 .615 .815 .601 8
IISCNLP r2 .821 .508 .740 .492 9 VRep r3 .893 .602 .805 .597 9
IISCNLP r1 .811 .489 .723 .469 10 VRep r2 .901 .603 .808 .597 10
IISCNLP r3 .811 .494 .721 .469 11 VRep r1 .891 .602 .803 .596 11
Venseseval r1 .708 .468 .649 .453 12 Inspire r3 .897 .589 .818 .579 12
Inspire r3 .769 .455 .687 .446 13 Venseseval r1 .873 .593 .810 .573 13
∗iUBC r3 .809 .507 .739 .498 Rev r1 .866 .571 .784 .562 14
∗iUBC r2 .809 .486 .738 .476 FBK-HLT-NLP r3 .885 .577 .809 .562 15
∗iUBC r1 .809 .431 .714 .423 FBK-HLT-NLP r1 .879 .574 .810 .559 16
AVG .793 .514 .718 .499 IISCNLP r2 .913 .576 .829 .556 17
MAX .838 .561 .760 .547 FBK-HLT-NLP r2 .886 .564 .802 .555 18

IISCNLP r1 .914 .573 .820 .551 19
IISCNLP r3 .914 .567 .821 .541 20
∗iUBC r3 .928 .602 .858 .592
∗iUBC r2 .928 .600 .861 .587
∗iUBC r1 .928 .512 .830 .505
AVG .892 .612 .816 .598
MAX .914 .703 .838 .696

Table 3: Test results in Headlines for both scenarios. Each row correspond to a system run, and each column to one evaluation

metric: F alignment (F), F alignment with type penalty (+T), F alignment with score penalty (+S) and F alignment with type and

score penalty (+TS), and R for the rank. The “∗” symbol denotes runs that include task organizers. Additionally, the table shows

results for the baseline, average of participants (AVG) and maximum score of participants (MAX).
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Images Syschunks Images Goldchunks
System F +T +S +TS R System F +T +S +TS R
Baseline .713 .404 .625 .404 Baseline .856 .480 .746 .480
DTSim r3 .843 .628 .781 .610 1 UWB r3 .892 .687 .841 .671 1
DTSim r2 .843 .615 .781 .599 2 UWB r1 .894 .683 .840 .667 2
DTSim r1 .843 .615 .759 .587 3 DTSim r3 .877 .668 .816 .648 3
Inspire r1 .754 .564 .704 .563 4 DTSim r2 .877 .653 .814 .636 4
FBK-HLT-NLP r1 .843 .566 .786 .548 5 DTSim r1 .877 .653 .796 .624 5
Inspire r2 .817 .543 .742 .536 6 UWB r2 .871 .635 .808 .621 6
FBK-HLT-NLP r3 .842 .554 .785 .535 7 Inspire r1 .797 .614 .748 .613 7
FBK-HLT-NLP r2 .843 .518 .781 .497 8 Inspire r2 .867 .596 .795 .588 8
IISCNLP r2 .846 .499 .777 .487 9 FBK-HLT-NLP r1 .873 .595 .815 .574 9
IISCNLP r1 .834 .486 .765 .474 10 Venseseval r1 .844 .579 .805 .574 10
IISCNLP r3 .834 .486 .765 .474 11 FBK-HLT-NLP r3 .879 .588 .819 .566 11
Venseseval r1 .743 467 .695 .463 12 VRep r1 .854 .552 .765 .548 12
Inspire r3 .811 .453 .735 .450 13 VRep r3 .855 .551 .765 .547 13
∗iUBC r2 .856 .561 .796 .550 VRep r2 .857 .547 .763 .543 14
∗iUBC r3 .856 .523 .794 .516 FBK-HLT-NLP r2 .879 .543 .818 .525 15
∗iUBC r1 .856 .489 .770 .477 IISCNLP r2 .893 .525 .823 .509 16
AVG .822 .538 .758 .525 Rev r1 .831 .501 .740 .493 17
MAX .846 .628 .786 .610 IISCNLP r3 .893 .505 .826 .492 18

Inspire r3 .855 .489 .781 .487 19
IISCNLP r1 .893 .502 .829 .485 20
∗iUBC r2 .908 .622 .855 .612
∗iUBC r3 .908 .587 .846 .578
∗iUBC r1 .908 .520 .816 .513
AVG .868 .583 .800 .570
MAX .894 .687 .841 .671

Table 4: Test results in Images for both scenarios. Each row correspond to a system run, and each column to one evaluation metric:

F alignment (F), F alignment with type penalty (+T), F alignment with score penalty (+S) and F alignment with type and score

penalty (+TS), and R for the rank. The “∗” symbol denotes runs that include task organizers. Additionally, the table shows results

for the baseline, average of participants (AVG) and maximum score of participants (MAX).
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Answer-Students Syschunks Answer-Students Goldchunks
System F +T +S +TS R System F +T +S +TS R
Baseline .619 .443 .5702 .443 Baseline .820 .557 .746 .557
FBK-HLT-NLP r3 .817 .561 .757 .555 1 IISCNLP r1 .868 .651 .825 .639 1
IISCNLP run3 .756 .560 .710 .545 2 IISCNLP r3 .868 .651 .825 .639 2
FBK-HLT-NLP r1 .816 .548 .759 .542 3 UWB r1 .864 .630 .809 .625 3
FBK-HLT-NLP r2 .816 .543 .748 .541 4 IISCNLP r2 .868 .627 .826 .617 4
IISCNLP r1 .756 .553 .710 .540 5 UWB r3 .859 .617 .804 .611 5
IISCNLP r2 .745 .532 .700 .520 6 FBK-HLT-NLP r3 .851 .598 .790 .589 6
DTSim r2 .817 .516 .737 .507 7 FBK-HLT-NLP r1 .878 .589 .810 .581 7
DTSim r1 .817 .516 .725 .505 8 VRep r3 .879 .582 .792 .580 8
DTSim r3 .818 .511 .736 .503 9 VRep r2 .870 .581 .785 .579 9
Inspire r1 .690 .455 .640 .452 10 FBK-HLT-NLP r2 .860 .576 .791 .571 10
Inspire r2 .725 .424 .653 .419 11 DTSim r2 .858 .555 .781 .546 11
Inspire r3 .762 .343 .670 .338 12 DTSim r1 .858 .555 .769 .543 12
∗iUBC r2 .796 .565 .748 .559 DTSim r3 .861 .547 .780 .537 13
∗iUBC r3 .796 .565 .748 .559 VRep r1 .772 .525 .701 .523 14
∗iUBC r1 .796 .450 .710 .449 Inspire r1 .795 .513 .735 .510 15
AVG .778 .505 .712 .497 Inspire r2 .821 .483 .744 .479 16
MAX .818 .561 .759 .555 UWB r2 .875 .481 .783 .475 17

Rev r1 .846 .418 .727 .410 18
Inspire r3 .874 .391 .770 .386 19
∗iUBC r2 .892 .651 .843 .644
∗iUBC r3 .892 .651 .843 .644
∗iUBC r1 .892 .502 .794 .499
AVG .854 .556 .781 .549
MAX .879 .651 .826 .639

Table 5: Test results in Answer-Students for both scenarios. Each row correspond to a system run, and each column to one

evaluation metric: F alignment (F), F alignment with type penalty (+T), F alignment with score penalty (+S) and F alignment with

type and score penalty (+TS), and R for the rank. The “∗” symbol denotes runs that include task organizers. Additionally, the table

shows results for the baseline, average of participants (AVG) and maximum score of participants (MAX).
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