
Proceedings of SemEval-2016, pages 464–468,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

TakeLab at SemEval-2016 Task 6: Stance Classification in Tweets
Using a Genetic Algorithm Based Ensemble

Martin Tutek, Ivan Sekulić, Paula Gombar, Ivan Paljak, Filip Čulinović, Filip 
Boltužić,  Vanja Mladen Karan, Domagoj Alagić, Jan Šnajder

University of Zagreb, Faculty of Electrical Engineering and Computing
Text Analysis and Knowledge Engineering Lab

Unska 3, 10000 Zagreb, Croatia
name.surname@fer.hr

Abstract

This paper describes our system for the detec-
tion of stances in tweets submitted to SemEval
2016 Task 6A. The system uses an ensemble of
learning algorithms, fine-tuned using a genetic
algorithm. We experiment with various off-
the-shelf classifiers and build our model using
standard lexical and a number of task-specific
features. Our system ranked 3rd among the 19
systems submitted to this task.

1 Introduction

Stance is the overall position held by a person to-
wards an object, idea, or proposition (Somasundaran
and Wiebe, 2009). The task of stance detection –
the automatic classification of stance expressed in
text – has been attracting increasing interest, as it
is of practical interest to many stakeholders, rang-
ing from political bodies to companies. Most recent
work focused on stance detection in online debates
(Somasundaran and Wiebe, 2009; Somasundaran and
Wiebe, 2010; Anand et al., 2011; Hasan and Ng,
2014; Sridhar et al., 2015).

Twitter is an outstanding platform for large-scale
stance analysis. However, unlike in the case of
dedicated online debate platforms, Twitter data is
much less structured and dialogical. Furthermore,
as pointed out by Rajadesingan and Liu (2014), pro-
cessing of tweets poses specific challenges stemming
from the high volume of data, brevity of messages,
and the use of non-standard language.

In this paper, we describe a system for stance clas-
sification in tweets, with which we participated in the
SemEval-2016 Task 6A. Given a tweet and the topic

of the tweet (the target), the task was to predict the
stance of the tweet author as either in FAVOR of the
target, AGAINST it, or NONE. Our system relies on
a supervised three-way classifier, using features stan-
dardly employed for stance classification and similar
tasks, but also a number of task- and target-specific
features. The gist of our approach was to start out
with the entire “kitchen sink” of features, as well as a
number of off-the-shelf classification algorithms, and
then perform a comprehensive model optimization on
a per-target basis. However, instead of relying on a
single model for each target, we trained four different
models and combined them into one classifier ensem-
ble for each target using a genetic algorithm. Our
system (TakeLab) ranked 3rd among the 19 systems
submitted to the SemEval-2016 Task 6A.

2 Related Work

To the best of our knowledge, the only work to have
addressed the stance classification in tweets is that of
Rajadesingan and Liu (2014), who specifically tackle
the data sparseness problem using a semi-supervised
approach based on label propagation. Somasundaran
and Wiebe (2009) and (2010) address stance detec-
tion in two-sided debates using supervised models
with opinion-target pairs, as well as sentiment and
argumentation trigger words as features. Anand et al.
(2011) address the same domain, but also consider
the dialogical properties of debates by identifying the
rebuttals between posts, while Sridhar et al. (2015)
consider the joint stance classification of posts and
relations among them. Hasan and Ng (2014) com-
bine stance classification with reason classification
in a joint learning framework.

464



3 Model

We approach this task as a three-way multiclass su-
pervised classification problem. We start off with
a number of learning algorithms and also design a
number of lexical and task-specific features. Subse-
quently, we reduce the algorithm and feature space by
employing a series of optimization rounds. Finally,
we train and fine-tune an ensemble of the chosen clas-
sifiers using a genetic algorithm. Following sections
describe these steps in more detail.

3.1 Features

We first preprocess the data: we tokenize the tweets,1

stem the resulting tokens, and finally eliminate the
stop words using the NLTK toolkit (Bird et al., 2009).
In some configurations, we use a sentiment lexicon
compiled by Han and Baldwin (2011) to replace all
positive and negative sentiment-bearing words with
dummy labels $POS$ and $NEG$, respectively.

We compute two types of features: lexical features
and task-specific features. We compute the former af-
ter preprocessing and the latter before preprocessing
the data. The lexical features are as follows:
• Word features – Word unigrams, bigrams, and

trigrams, computed as (1) binary vectors, (2) count-
based vectors, and (3) tf-idf-weighted vectors. We
use a frequency cut-off of 2 and additionally filter
based on class entropy with a cut-off set at 1.1;

• Character features – Character bigrams and tri-
grams, computed in the same manner as the word
features;

• Word embeddings – A 300-dimensional distribu-
tional representation of the tweet obtained as as a
weighted addition of the distributional vectors of
the individual words. We use the freely available2

skip-gram embeddings of Mikolov et al. (2013)
and weight each vector based on the information
content of the corresponding word, following Šarić
et al. (2012).
We also used the following task-specific features:

• Counting features – The average word length,
number of retweet symbols, number of hashes,
number of emoticons, number of capitalized words,

1http://sentiment.christopherpotts.net/code-
data/happyfuntokenizing.py

2https://code.google.com/archive/p/word2vec/

and the number of exclamation marks;
• Repeated vowels – Whether the tweet contains at

least one sequence of the same vowel longer than
two characters. This feature is often employed
in Twitter sentiment analysis, e.g., in (Xu et al.,
2015);

• Number of misspelled words – The number of
misspelled words, determined using the freely-
available PyEnchant spellchecking library;3

• Scripture citation – Our analysis of the dataset re-
vealed that, for two out of five targets, namely Athe-
ism and Legalization of Abortion, the users who
quote the scriptures are by and large AGAINST
the targets. To capture this regularity, we include
a feature that checks whether the tweet matches
some of the common scripture citation patterns,
such as “Rom. 14:17” in “RT @prayerbullets: Let
the righteousness, peace, and joy of the kingdom
be established in my life -Rom. 14:17”;

• Hashtag splitting – Our analysis also revealed
that for some targets the hashtags are highly in-
dicative of the stance. In some cases, however,
a hashtag – although highly indicative – occurs
quite rarely in the dataset. For example, in the
tweet “Rethink your beach clothes. Bc it may op-
press some people!! #thisoppresseswomen” the
hashtag is fully indicative of the stance, but overall
it occurs rarely. On the other hand, the unigram
“oppress” and the bigram “oppress women” are
rather frequent in the dataset and also indicative of
the stance. To account for this, we split up each
hashtag into its constituent words by employing
a simple greedy procedure: we start from the end
of the hashtag and work our way towards its start,
always taking the longest possible word contained
in the dictionary.

3.2 Model Optimization

Algorithm selection. We started off considering
a number of different classification algorithms, im-
plemented in the scikit-learn package (Pedregosa et
al., 2011): Support Vector Machine (SVM), Ran-
dom Forest (RF), Logistic Regression (LR), Gradi-
ent Boosting (GB), Multinomial Bayes (MB), Extra
Trees (ET), and general stochastic gradient descent
classifier (SGDC). We then fixed a baseline set of fea-

3http://pythonhosted.org/pyenchant/

465



tures consisting of word unigrams and bigrams, and
evaluated all the combinations of classifiers and text
representations using a 3-fold cross-validation. We
discarded the classifiers that performed considerably
worse than the others, leaving us with four classifiers:
RF, GB, LR, and SVM.

Ensemble learning. We decided to opt for an en-
semble classifier using the four remaining algorithms,
motivated by the fact that ensembles generally work
better than their base learners as well as the fact that
all of our algorithms performed comparably.

With this in mind, our next step was to optimize the
hyperparameters of each of the four classifiers to have
a fixed ensemble model. Since an exhaustive search
would be too time-consuming, we arbitrarily fixed
multiple feature sets and hyperparameter ranges.

We define the ensemble model as a linear combi-
nation of the output probabilities of the classifiers,
and optimize its weights with respect to the F-score.
A common way of building the ensemble is stacking,
in which one uses the classifiers’ predictions as in-
puts to a meta-level classifier. However, we decided
not to use this approach as it would not allow us to
optimize for the F-score. Instead, we used a genetic
algorithm, which works with arbitrary objectives as
fitness functions. As we optimize only four values,
running time was not an issue.

We modeled the operators of the genetic algorithm
as follows. We initialized the population of size 100
uniformly across the interval [0, 1], and constrained
the weights to the same interval by clipping. For
crossover, we used tournament selection, randomly
selecting three individuals from the population, re-
placing the worst of the three with the child of the
remaining two. The crossover created a child by ran-
domly selecting weights from either of the parents.
We used mutation with random uniform noise from
the interval [−0.3, 0.3].

Feature selection. Lastly, we needed to find the
best feature set for each target. We manually com-
piled a list of feature sets based on our experience
with the task as well as intuition about which features
work well in practice. We treated the ensemble as a
single classifier, and all the constituents received the
same feature sets as the input. However, instead of
optimizing the score of the individual classifiers, we
cross-validated the whole ensemble with respect to

the input features and the F-score, treating the genetic
algorithm as a trainable classifier, with the stochastic
search as an optimization algorithm.

4 Evaluation

4.1 Task Description

The dataset consisted of 2814 tweets in the train set
and 1249 in the test set divided into five targets – Athe-
ism (ATH), Climate Change is a Real Concern (CC),
Feminist Movement (FM), Hillary Clinton (HC), and
Legalization of Abortion (LA). Possible stances were
FAVOR, AGAINST, and NONE, where the latter
served both as an indicator of a tweet not being re-
lated to the target (e.g., “Pop may throw in the towel
second half..”), as well as the tweet being neutral
towards the target (e.g., “atheism involves what a
person does or does not believe, agnosticism involves
what a person does or does not know. #Waterford”).

The official evaluation measure was the macro-
average of F-score for FAVOR and AGAINST across
all targets, meaning that weak F-score performance
on an unbalanced label distribution for a target could
be compensated for by the overall good performance
on other targets. Note that the label NONE was ig-
nored during the evaluation. Consequently, misclassi-
fying FAVOR or AGAINST as NONE (or vice versa)
was penalized less than misclassifying FAVOR as
AGAINST (or vice versa).

Although the task can straightforwardly be ap-
proached as a three-way classification problem, it
can also be framed as a two-step binary classifica-
tion problem, first discriminating between NONE
and FAVOR+AGAINST, and then between FAVOR
and AGAINST. The potential benefit of the two-step
approach is that the features may be separated more
clearly between classes, while the downside is that
the error propagates from the first to the second stage.

The ambiguity of the label NONE posed a problem
in approaching the task as a two-step binary classi-
fication. The best accuracy on the first step (NONE
vs. FAVOR and AGAINST) was around 70%, while
the best classifiers reached about 80% accuracy in
the second step (FAVOR vs. AGAINST), resulting
in an overall much higher error rate than that of the
three-way classification model.

466



4.2 Feature Analysis

As described in Section 3, we used an ensemble of
classifiers fit by a genetic algorithm. One of the steps
was to determine the best features for each target and
for each classifier. For brevity, we provide just a part
of the results of our feature analysis study in Table 1.
We show the F-score for FAVOR and AGAINST for
each target as well as the score across all targets. We
consider the following ten feature groups (the first
three are the groups used in the submitted system):
• Group 1 – binary-weighted word unigrams, bi-

grams, and trigrams, as well as character trigrams
and stylistic features (the first four task-specific
features). This group was used for the ATH and
LA targets;

• Group 2 – $POS$/$NEG$ labels, binary-weighted
word unigrams, bigrams, and trigrams, character
trigrams. This group was used for the CC and FM
targets;

• Group 3 – binary-weighted word unigrams, bi-
grams, and trigrams, as well as character trigrams,
stylistic features, and word embeddings. This
group was used for the HC target;

• Group 4 – binary-weighted word unigrams;
• Group 5 – word embeddings;
• Group 6 – binary-weighted character trigrams,

word embeddings;
• Group 7 – frequency-weighted word unigrams

and bigrams, character trigrams, stylistic features;
• Group 8 – no stemming, binary-weighted word un-

igrams, bigrams, and trigrams, character trigrams,
stylistic features;

• Group 9 – no stemming, frequency-weighted
word unigrams, bigrams, and trigrams, character
trigrams, stylistic features;

• Group 10 – frequency-weighted unigrams and bi-
grams, character trigrams.

4.3 Model Variants

In Table 2, we provide the performances (scored with
the official evaluation metric) of the top three systems
from the official run, namely MITRE, pkudblab, and
TakeLab (our submission), as well as of the number
of other model variants we produced. We include
our single best performing classifier – the Random
Forest classifier (Best single) and an ensemble where
the output probabilities are simply averaged (Averag-

Group ATH CC FM HC LA All

1 0.686 0.712 0.645 0.638 0.660 0.698
2 0.669 0.720 0.689 0.621 0.658 0.694
3 0.676 0.706 0.654 0.643 0.645 0.689
4 0.673 0,707 0.654 0.645 0.636 0.694
5 0.655 0.706 0.659 0.628 0.649 0.692
6 0.672 0.719 0.657 0.631 0.634 0.697
7 0.660 0.719 0.664 0.636 0.655 0.693
8 0.655 0.715 0.655 0.639 0.611 0.692
9 0.672 0.718 0.660 0.618 0.640 0.695

10 0.656 0.714 0.655 0.628 0.661 0.690

Table 1: Feature analysis.

Team/model F1-score

Optimistic 0.6956
MITRE 0.6782
pkudblab 0.6733
TakeLab* 0.6683
Majority vote 0.6522
Averaging 0.6331
Best single 0.6161

Table 2: Model performances (* marks our submitted model).

ing). Additionally, we include an optimistic variant
of our best model (Optimistic), where the features
and classifier hyperparameters are the same as in our
submitted model, but we used the gold labeled test
set as the validation set for the genetic algorithm. The
result is a rough estimate of the upper-bound F-score
of our submitted model on this dataset.

We also include a majority vote per target baseline
model (Majority vote). The baseline yields an F-
score of 0.6522, which surprisingly places it in the
6th place on the task leaderboard.

5 Conclusion

We described the stance classification system with
which we participated in the SemEval-2016 Task
6A. Our system uses an ensemble of supervised clas-
sifiers, trained using a number of lexical and task-
specific features, and optimized using a genetic algo-
rithm. Our system ranked 3rd in the official evalua-
tion run.

There are many possible directions for future work.
One is to use the tweet data of users and their so-
cial network to augment the training data. Multi-
task learning might also be worth investigating, as

467



some of the topics are semantically related. Further-
more, using external knowledge, such as searching
the Wikipedia for keywords related to a topic, may
be useful for identifying the tweets related to a topic.

References
Pranav Anand, Marilyn Walker, Rob Abbott, Jean E Fox

Tree, Robeson Bowmani, and Michael Minor. 2011.
Cats rule and dogs drool!: Classifying stance in online
debate. In Proceedings of the 2nd workshop on com-
putational approaches to subjectivity and sentiment
analysis, pages 1–9. Association for Computational
Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natu-
ral Language Processing with Python. O’Reilly Media.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens # twitter. In
Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, volume 1, pages 368–378. Association
for Computational Linguistics.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are you
taking this stance? Identifying and classifying reasons
in ideological debates. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 751–762. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research,
12:2825–2830.

Ashwin Rajadesingan and Huan Liu. 2014. Identifying
users with opposing opinions in twitter debates. In
Social Computing, Behavioral-Cultural Modeling and
Prediction, pages 153–160. Springer.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. TakeLab: Systems
for measuring semantic text similarity. In Proceedings
of the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceed-
ings of the Sixth International Workshop on Semantic
Evaluation, pages 441–448. Association for Computa-
tional Linguistics.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceedings of
the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
1-Volume 1, pages 226–234. Association for Computa-
tional Linguistics.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Generation
of Emotion in Text, pages 116–124. Association for
Computational Linguistics.

Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor,
and Marilyn Walker. 2015. Joint models of disagree-
ment and stance in online debate. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages
116–125. Association for Computational Linguistics.

Hongzhi Xu, Enrico Santus, Anna Laszlo, and Chu-Ren
Huang. 2015. LLT-PolyU: Identifying sentiment inten-
sity in ironic tweets. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), pages 673–678. Association for Computational
Linguistics.

468




