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Abstract

This paper describes the submission of team
IIP in SemEval-2016 Task 4 Subtask A. The
presented system is a novel weighted sum
ensemble approach for sentiment analysis of
short informal texts. The ensemble com-
bines member classifiers that output classifi-
cation confidence metrics. For the ensemble
classification decision the members are com-
bined by weights. In the presented approach
the weights are derived to prioritize specific
classes in multi-class classification. The pre-
sented results confirm that this improves re-
sults for the prioritized classes. The official
task submission achieved a macro-averaged
negative positive F1 of 57.4%. Post submis-
sion changes resulted in a F1 score of 60.2%.
The evaluation also shows that the system out-
performs other ensemble methods.

1 Introduction

The SemEval workshops offer the opportunity to
compete across a variety of natural language pro-
cessing tasks. The SemEval-2016 Task 4 Sub-
task A targets message polarity classification of
tweets (Nakov et al., 2016). The polarity can be neg-
ative, neutral or positive while the submissions are
ranked omitting performance on the neutral class.
In practical use cases some classes of a multi-
classification problem might be deemed more im-
portant than others. For example some work looks
explicitly at negative sentiment (Tetlock, 2007).

Combining diverse methods has shown success
in sentiment analysis. The combination of machine
learners and opinion lexicons has resulted in some of

the best submissions in previous SemEval competi-
tions (Kiritchenko et al., 2014; Miura et al., 2014).
Along the line of combining different methods, en-
semble approaches have also shown top results in
previous runs of this task. Both ensembles of a
small number of sophisticated systems (Hagen et
al., 2015) as well as large numbers of simpler ap-
proaches have been evaluated (Wicentowski, 2015).
Ensemble classification with regard to combining
different machine learners and feature spaces has
previously been evaluated extensively for document
level sentiment classification (Xia et al., 2011). In
that context, weighted sum ensemble methods have
shown the best performance.

This paper describes a weighted sum ensemble
that prioritizes some classes in multi-class classi-
fication. Results compare the system against two
baselines. One baseline is the equivalent approach
without prioritizing classes, while the other is an un-
weighted combination of ensemble members. Naive
Bayes and logistic regression classifiers are explored
as members across a variety of feature spaces. These
classifiers are know to perform differently (Ng and
Jordan, 2002). The presented results show:

1. The presented approach successfully prioritizes
classes in a multi-class classification problem.

2. The ensemble method outperforms individual
members and the baseline ensembles.

The system description will start by a brief out-
line of the evaluation data. Then the ensemble mem-
bers are described before the ensemble method is de-
tailed. Finally, the results on all SemEval test sets al-
low an assessment of the approach and future work.
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Twitter Corpus Pos. Neg. Neu. Total
2013-train (A) 2869 1077 3733 7679
2013-dev (A,C) 459 258 569 1286
2013-test 1571 601 1637 3813
2014-test 978 200 668 1853
2015-test 1038 365 987 2392
2016-train (A) 2483 678 1625 4796
2016-dev (A,B,C) 669 319 611 1595
2016-devtest (A,B,C) 786 254 548 1588
2016-test 7060 3231 10342 20633

Table 1: SemEval data subsets as well as the full 2016 training

set (A), submission (B) and post-submission (C) development

data.

2 Data

Training data for this approach is constrained to data
provided through the SemEval competitions. Ta-
ble 1 shows the evaluation data used in the approach.
This is a subset of the original data, as some tweets
were unavailable when querying the Twitter API.
The test data corresponds to the data used in the of-
ficial task ranking (Nakov et al., 2016).

3 Ensemble Members

The ensemble members are the basic exchangeable
building blocks of this approach. In this work Naive
Bayes and logistic regression are chosen as differ-
ently performing members.

3.1 Naive Bayes

The Naive Bayes classifier is based on the Bayes
theorem. The assumption that features are statisti-
cally independent might seem too naive. However,
this approach often performs surprisingly well. The
implementation uses the multinomial Naive Bayes
classifier of the datumbox library1.

3.2 Logistic Regression and Opinion Lexicons

Logistic regression is the second classification ap-
proach for ensemble members. Input for this method
are text features, as well as scores from five opin-
ion lexicons. Three lexicons have been created auto-
matically from large corpora, namely SentiWordNet
(Baccianella et al., 2010), NRC Hashtag Sentiment
Lexicon and Sentiment140 Lexicon (Kiritchenko et
al., 2014). Bing Liu’s Opinion Lexicon (Hu and

1https://github.com/datumbox/datumbox-framework

Liu, 2004) was created manually and a fifth lexicon
was created automatically and then curated manu-
ally. For each lexicon, the two sums over all neg-
ative as well as positive opinion scores correspond-
ing to unigrams or lemmas in a message are added
as features. The implementation uses the logistic re-
gression classifier available in LIBLINEAR (Fan et
al., 2008).

3.3 Feature Extraction
User names, URLs and retweet handles are removed
before feature extraction. Part-of-speech tags of the
CMU ARK Tagger (Owoputi et al., 2013) are used
for truecasing if words in a tweet are mostly lower-
case or mostly capitalized. ClearNLP (now NLP4J2)
is used for tokenization, part-of-speech tagging and
dependency parsing (Choi and Mccallum, 2013;
Choi, 2016). Feature inputs for the classifiers are
bag-of-words of unigrams (uni), part-of-speech tags
(pos), bigrams (bi), dependency pairs (dp) (Xia et
al., 2011) and brown clusters (cl) (Owoputi et al.,
2013). In this work a classifier only ever uses one of
the different text feature sets.

4 Ensemble

Ensemble methods combine a set of multiple mem-
ber classifiers. These members can be various clas-
sifiers of different methods and different feature sets.
Individual classifiers output a classification decision
or a classification score for each class.

In the context of this approach classification
scores are required for all ensemble members. These
scores oki ≥ 0 for every class i ∈ C and every mem-
ber classifier k ∈M are assumed to be normalized,

C∑

i=1

oki = 1. (1)

The score oki can be interpreted as a probability or
confidence measure of classifier k for class i.

A basic score based classification method would
be to derive the classification decision from the sum
over all scores. The highest accumulated class sum
would determine the decision, as in

argmax
i∈C

M∑

k=1

oki. (2)

2https://github.com/emorynlp/nlp4j
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Instead the approach uses a weighted sum, with
a weight wki for every classifier k and every class
i. Differentiating weights by class represents a finer
grained weighting scheme than only differentiating
by classifier. The ensemble output is determined by

argmax
i∈C

M∑

k=1

wkioki, (3)

as the class with the highest weighted sum. The es-
sential aspect of a weighed ensemble approach then
is how the weights are calculated. The following
sections describe optimization conditions that can be
used to calculate weights.

4.1 Standard Weight Optimization
A weighted sum ensemble attempts to improve clas-
sification by weighing the class scores of individ-
ual members. Weights can be calculated based on a
gold dataset where the class scores oki and the cor-
rect gold label g are known.

The decision function (3) is based on the maximal
weighted sum of scores. It is straight forward that a
lower difference between weighted sums of differ-
ent classes is more prone to an erroneous decision
through inaccuracies. Thus an intuitive condition for
optimal weights could be to maximize the difference
between the weighted sum for the correct class and
all sums of incorrect classes. For every known gold
label g and the corresponding scores okg the condi-
tions would be

M∑

k=1

wkgokg − wkjokj = |M | , (4)

for all labels besides the gold label, j ∈ C\{g}. The
unweighted sum of classification scores was defined
equal one for a single classifier (1). This would also
be the maximal difference in case of one classifier.
Consequently, the conditions for maximal difference
between weighted sum scores over the classifier set
M are set equal to the cardinality of the set.

4.2 Prioritizing Weight Optimization
In contrast to the previously introduced weight op-
timization conditions the following conditions aim
to prioritize valid classification of some classes over
others. Low priority classes are defined by the set

L ⊆ C. This also defines the priority classes as
P = C \ L.

The approach does not aim to improve the ensem-
ble classification across low priority classes L. For
a low priority label l ∈ L the weights are fixed to

wkl = 1. (5)

Based on this, the standard weight conditions (4)
for any low priority gold label g ∈ L and all priority
labels p ∈ P are rephrased as

M∑

k=1

wkpokp = − |M |+
M∑

k=1

okg ≤ 0. (6)

This is problematic because the unweighted sum
over scores is positive by definition, since scores
can’t be negative. However, the derivation shows
that the priority weights wkp would be conditioned to
change this sum to negative in favor of low-priority
classification decisions. This is a contradiction to
the concept of priority classes. The conditions (6)
for any low priority gold label g ∈ L and all priority
labels p ∈ P are relaxed to

M∑

k=1

wkpokp = 0. (7)

This can be understood as a lower bound for priority
weights. Priority weights are also still conditioned
to improve priority classification decisions as per the
standard conditions (4) for any g ∈ P .

Based on the gold dataset the conditions for low
priority gold labels (7) and for priority gold labels
(4) form an overdetermined system of equations.
The solution to this are the priority weights opti-
mized to improve the decision of the ensemble ap-
proach. The weights are calculated by solving the
conditions as a least squares problem. This requires
gold labels from a development dataset different
from classifier training data.

5 Results

The following section compares results of the in-
troduced approach against the ensemble members
and two baseline ensemble methods. The results for
Naive Bayes and logistic regression ensemble mem-
bers on different feature spaces as well as the results
for the ensembles are presented in the following.
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Test, weight data Sum IIP std IIP prio
uni-bi uni-bi-cl all uni-bi uni-bi-cl all uni-bi uni-bi-cl all

2013-test, B 55.5 56.8 55.7 55.1 55.4 53.7 60.5 60.5 59.8
2014-test, B 61.6 62.9 61.3 59.5 60.5 59.4 65.3 65.9 64.5
2015-test, B 57.4 59.4 58.3 58.5 57.6 56.8 63.3 62.9 61.0
2016-test, B 56.1 58.0 56.6 55.0 56.0 55.4 58.3 58.7 57.4∗
2013-test, C 55.5 56.8 55.7 59.7 59.4 59.7 63.6 64.3 64.6
2014-test, C 61.6 62.9 61.3 64.7 66.1 65.3 68.0 69.9 68.5
2015-test, C 57.4 59.4 58.3 60.7 62.3 61.3 64.1 66.2 65.5
2016-test, C 56.1 58.0 56.6 58.2 59.0 58.8 59.4 60.2 59.5

Table 2: Macro-averaged positive negative F1 [%] for all test data sets across three ensemble methods and three member sets. Set

all corresponds to all classifier, feature combinations evaluated for 2016-test data in Table 3. Ensemble members were trained on

the full 2016 training set (A) while ensemble weights were optimized on 2016 (B) and 2013/2016 development sets (C, Table 1).

2016-test uni pos bi dp cl
NB 54.5 30.3 40.7 37.6 54.4
LR 55.5 53.5 52.0 52.7 57.6

Table 3: Macro-averaged positive negative F1 [%] for ensemble

members of 2016-test on full 2016 training set (A, Table 1).

Table 3 shows the results for Naive Bayes (NB)
and logistic regression (LR) ensemble members. For
both classification approaches brown clusters (cl)
show the best performance.

Table 2 shows results for three ensemble ap-
proaches and three sets of members. The Sum
columns show results for an unweighted sum over
contributing classifier scores, as in (2). IIP std is a
weighted sum approach with standard weight opti-
mization as in (4). IIP prio adds the priority condi-
tion (7) with positive and negative as priority classes.

The bottom result set for weight optimization on
2013 and 2016 development data shows substan-
tially better results than the top one, where weights
were optimized on 2016 development data. While
the weighted sum approach is of course unaffected
by this, this holds true for all ensemble member sets
in the weighted sum ensembles.

Across both result sets the IIP prio ensemble al-
ways outperforms the other two baseline ensemble
methods. The standard ensemble which does not pri-
oritize classes IIP std outperforms the sum baseline
in the bottom result set but often does not in the top
one. For all ensemble approaches the member sets
of classifiers for unigram, bigram and cluster feature
spaces usually show the best results.

The system for the official submission ∗ used all
members with priority weight optimization, obtain-

ing a macro-averaged F1 of 57.4%. Though this out-
performs the equivalent baseline ensembles it per-
forms on a similar level as the best logistic regres-
sion member in Table 3. In contrast the best IIP prio
result used unigram, bigram and cluster members in
an ensemble optimized for 2013 and 2016 develop-
ment data, achieving a macro-averaged F1 of 60.2%.

6 Conclusion

This paper presented two methods for weighted sum
ensemble classification. The introduced class prior-
itizing method outperformed the standard method in
all evaluations. Furthermore, the results show that
the class prioritizing weight ensemble method usu-
ally outperformed the basic sum ensemble approach
substantially. This shows that combining different
classifiers across various feature spaces while pri-
oritizing some classes in multi-class classification
works well with the presented system.

The results varied significantly depending on the
data used for optimizing weights. Optimization on
a more diverse data set showed better performance.
Questions of domain dependence and over-fitting
need to be explored further. With the modular na-
ture of an ensemble a variety of classifiers and fea-
tures are left to be evaluated in the context of this
approach.
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