
Proceedings of SemEval-2016, pages 171–177,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

NRU-HSE at SemEval-2016 Task 4: Comparative Analysis of Two Iterative Methods Using
Quantification Library

Nikolay Karpov, Alexander Porshnev, Kirill Rudakov

National Research University Higher School of Economics

25/12 Bolshaja Pecherskaja str. 603155
Nizhny Novgorod, Russia

{nkarpov, aporshnev}@hse.ru, rudakovkirillx@gmail.com

Abstract

In many areas, such as social science, politics or
market research, people need to track sentiment
and their changes over time. For sentiment analysis
in this field it is more important to correctly esti-
mate proportions of each sentiment expressed in
the set of documents (quantification task) than to
accurately estimate sentiment of a particular doc-
ument (classification). Basically, our study was
aimed to analyze the effectiveness of two iterative
quantification techniques and to compare their ef-
fectiveness with baseline methods. All the tech-
niques are evaluated using a set of synthesized data
and the SemEval-2016 Task4 dataset. We made the
quantification methods from this paper available as
a Python open source library. The results of com-
parison and possible limitations of the quantifica-
tion techniques are discussed.

1 Introduction

In many areas, such as customer-relationship manage-
ment or opinion mining, people need to track changes
over time and measure proportions of documents ex-
pressing different sentiments. In these situations, the
task of accurate categorization of each document is re-
placed by the task of providing accurate proportions of
documents from each class (quantification). George
Forman suggested defining the ‘quantification task’ as
finding the best estimate for the amount of cases in each
class in a test set, using a training set with substantially
different class distribution (Forman, 2008).

Application of the quantification approach in opinion
mining (Esuli et al., 2010), network-behavior analysis
(Tang et al., 2010), word-sense disambiguation (Chan
and Ng, 2006), remote sensing (Guerrero-Curieses et
al., 2009), quality control (Sánchez et al., 2008), moni-
toring support-call logs (Forman et al., 2006) and credit

scoring (Hand and others, 2006) showed high perfor-
mance even with a relatively small training set.

Although quantification techniques are able to pro-
vide accurate sentiment analysis of proportions in situa-
tions of distribution drift, the question of optimal tech-
nique for analysis of tweets still raises a lot of questions.
It is worth mentioning that sentiment analysis of tweets
presents additional challenges to natural language pro-
cessing, because of the small amount of text (less than
140 characters in each document), usage of creative
spelling (e.g. “happpyyy”, “some1 yg bner2 tulus”), ab-
breviations (such as “wth” or “lol”), informal construc-
tions (“hahahaha yava quiet so !ma I m bored av even
home nw”) and hashtags (BREAKING: US GDP
growth is back! #kidding), which are a type of tagging
for Twitter messages.

In our paper we used several quantification methods
mentioned in literature as the best ones and evaluated
them by comparing their effectiveness with one another
and with baseline methods.

The paper is organized as follows. In Section 2, we
first look at the notation, then we briefly overview six
methods to solve the quantification problem. Section 3
describes two datasets we use in our research. Section 4
describes the results of our experiments, while Section 5
concludes the work defining open research issues for
further investigation.

2 Quantification Methods

In this section we describe the methods used to handle
changes in class distribution.

First, let us give some definition of notation.
Х: vector representation of observation x;
C = {c1, …, cn}: classes of observations, where n is the
number of classes;

�� (c): a true prior probability (aka “prevalence” of
class c in the set S;

�̂� (cj): estimated prevalence of cj using the set S;

�̂�
�(cj): estimated �̂� (cj) obtained via method M;

171

p(cj /x): a posteriori probabilitiesto classify an observa-
tion x to the class cj;

�����, ����: training and test sets of observations,
respectively;
�����: a subset of ����set where each observation
falls within class �;
����_��= {pTEST(ci)}; i=1, ������: class probability distri-
bution of the test set;

�����_�� = {pTRAIN(ci)}; i=1, ������: class probability dis-
tribution of the training set;

The problem we study has some training set, which
provides us with a set of labeled examples – TRAIN,
with class distribution TRAIN_CD. At some point the
distribution of data changes to a new, but unknown class
distribution – TEST_CD, and this distribution provides
a set of unlabeled examples – TEST. Given this termi-
nology, we can state our quantification problem more
precisely.

2.1 Classify and Count

The first approach provides information about propor-
tions of document in each class just by classification of
each document. In this case, the process starts with
training the best available classifier, applying it to the
test set and counting the amount of documents in each
class. Forman named this obvious approach as Classify
and Count (CC) (Forman, 2008).

The observed count P of positives from the classifier
will include both true positives and false positives, P =
TP + FP, as characterized by the standard 2 × 2 confu-
sion matrix.

Classifier Predictions:
Actual\Prediction P_ N_
P TP FN
N FP TN

2.2 Adjusted Classify and Count

Adjusted Classify and Count (ACC – aka the “confusion
matrix model” quantification method (Forman, 2005)
consists of six steps:

1. training a binary classifier on the entire
training set

2. estimating its characteristics via many-fold

cross-validation (tpr = TP/P and fpr = FP/N)

3. applying the classifier to the test set
4. counting the number of test cases on which

the classifier outputs positives
5. estimating the true percentage of positives

via Equation (1)

 �̂���(�) =
����(�)����(�)

���(�)����(�)
 (1)

6. clipping the output to the feasible range.

As mentioned by Forman, the performance of the

ACC method degrades severely in the situation of a
highly imbalanced training sample. If one of the classes
is rare in the training set, the classifier will learn not to
vote for this class because of tpr = 0%. Small denomina-
tor (tpr − fpr) in Equation (1) makes the quotient highly
sensitive in the estimation of tpr or fpr, and this leads to
low quantification accuracy especially at the small train-
ing sets with high class imbalance (Forman et al., 2006).

2.3 Probabilistic Classify and Count

The Probabilistic Classify and Count (PCC) method dif-
fers from the CC algorithm by counting the expected
share of positive predicted documents, i.e. the probabil-
ity of membership in class c of observation ��after clas-
sifying documents in the TEST set.

 �̂����
��� (�) =

∑ �(�|��)��∈����

|����|
 (2)

2.4 Probabilistic Adjusted Classify and Count

The central idea of the Probabilistic Adjusted Classify
and Count (PACC) algorithm is evidently to combine
two algorithms above – ACC and PCC. �̂�� (�), ���(�),
 ���(�) should be replaced by their expected values, i.e.

�̂��(�)~�̂���(�),

���(�)~�{���(�)},

���(�)~�{���(�)},

where

�{���(�)} =
∑ �(�|��)��∈�����

|�����|

�{���(�)} =
∑ �(�|��)��∈������

|�����̅|

then the form of the PACC is

 �̂����(�) =
�����(�)��{���(�)}

�{���(�)}��{���(�)}
 (3)

2.5 Expectation Maximization

A simple procedure to adjust the outputs of a classifier
to a new a priori probability is described in the study by
(Saerens et al., 2002).

 �(��/��) =

� ��������

� ���������
��(��/��)

∑
� ��������

� ���������
��(��/��)�

���

 (4)

It is important that authors suggest using not only the
well-known formula (4) to compute the corrected a pos-
teriori probabilities, but also an iterative procedure to

172

adjust the outputs of the trained classier with respect to
these new a priori probabilities, without having to refit
the model, even when these probabilities are not known
in advance.

To make the Expectation Maximization (EM) meth-
od clear, we specify its algorithm in Figure1 using a
pseudo-code. The algorithm begins with counting start
values for class probability distribution, using labels on
the training set TRAIN (line 1), builds an initial classifi-
er C_i from the TRAIN set (line 2) and classifies each
item in the unlabeled TEST set (line3), where the
classify functions return the a posteriori probabili-

ties (TEST_prob) for the specified datasets. The algo-
rithm then iterates in lines 4-9 until the maximum num-
ber of iterations (maxIterations) is reached. In this
loop, the algorithm first uses the previous a posteriori
probabilities TEST_prob to estimate a new a priori
probability (line 6). Then, in line 7, a posteriori proba-
bilities are computed using Equation (4). Finally, once
the loop terminates, the last posteriori probabilities re-
turns (line 9).

EM (TRAIN, TEST)

1.TEST_CD = prevalence(TRAIN)
2. C_i = build_clf(TRAIN)
3. TEST_prob = classify(C_i, TEST)
4. for (i=1; i<maxIterations; i++)
5. {
6. TEST_CD = prevalence(TEST_prob)
7. TEST_prob = bayes(TEST_CD, TEST_prob)
8. }
9. return TEST_CD

Figure 1: Pseudo-code for the EM algorithm.

To build a classifier in the function build_clf, we

use support vector machines (SVM) with linear kernel.

2.6 Iterative Class Distribution Estimation

Another interesting method is iterative cost-sensitive
class distribution estimation (CDEIterate) described in
the study by (Xue and Weiss, 2009).

The main idea of this method is to retrain a classifier
at each iteration, where the iterations progressively im-
prove the quantification accuracy of performing the
«classify and count» method via the generated cost-
sensitive classifiers.

For the CDE-based method, the final prevalence is
induced from the TRAIN labeled set with the cost of
classes COST. The COST value is computed with Equa-
tion (5), utilizing the class distribution calculated during
the previous step TEST_CD. For each iteration, we re-
calculate:

 ���� =
����_��

�����_��
 (5)

The CDEIterate algorithm is specified in Figure 2,
using the pseudo-code. The algorithm begins with
counting the class distribution TRAIN_CD for training
labels TRAIN (line 1). Then it builds an initial classifier
C_i from the TRAIN set (line 2). In a loop, this algo-

rithm uses the previous classifier C_i to classify the
unlabeled TEST set by estimating a posterior probabil-
ity TEST_prob for each item in a test set (line 5).
Then. in line 6, the a priory probability distribution is
computed and the cost ratio information is updated (line
7). In line 8, a new cost-sensitive classifier C_i is gen-
erated using the TRAIN set with the updated cost
ratioCOST. The algorithm then iterates in lines 4-9 until
the maximum number of iterations (maxIterations)
is reached. Finally, once the loop terminates, the last a
priory probability distribution of classes is returned
TEST_CD (line 10).

CDEIterate (TRAIN, TEST, COST_start)

1.TRAIN_CD = prevalence(TRAIN)
2. C_i = build_clf(TRAIN, COST_start)
3. for (i=1; i<maxIterations; i++)
4. {
5. TEST_prob= classify(C_i, TEST)
6. TEST_CD = prevalence(TEST_prob)
7. COST = TEST_CD/TRAIN_CD
8.C_i = build_clf(TRAIN, COST)
9. }
10. return TEST_CD

Figure 2: Pseudo-code for the CDE-Iterate algorithm.

To build a cost-sensitive classifier in the function

build_clf, we tried a few ones and chose a fast lo-
gistic regression classifier.

We did not find any open library where baseline
quantification methods were implemented. We, there-
fore, shared all the algorithms, which we had pro-
grammed using the Python language, on the Github re-
pository1. We believe that this library can help pool in-
formation on quantification.

3 Experiment Methodology

This section describes our experimental setup. It de-
scribes the datasets we use, the specific experiments we
run and the classifier induction algorithm we employ.

3.1 Simulations on Artificial Data

We present a simple experiment that illustrates the effi-
ciency of iterative adjustment of the a priori probabili-
ties.

1https://github.com/Arctickirillas/Rubrication

173

We use random sample generators from SkiKit
Library to build artificial datasets of controlled size and
complexity2. For each dataset we generate 10
ords with 10 features. Figure 3 exemplifies
a dataset with two classes.

The initial prevalence for classes
(ptrain(c1) = ptrain(c2) = 0.5). The total set randomly splits
into two subsets: 25% training set, 75% test set.
training set, the class distribution remains unchanged.

For the test set, we vary prevalence value
0.05 to 0.95.

Figure 3: An example of TRAIN and TEST
with TRAIN_CD = {0.5, 0.5} and TEST_CD

spectively (generated with 2 fea

For each prevalence value we generate a

ferent test sets. Therefore, nineteen hundred
of the following experimental design are applied.

We used a Kullback-Leibler Divergence (KLD)
tween the true class prevalence and the

2http://scikit-
learn.org/stable/modules/generated/sklearn.da
sification.html

erators from SkiKit-Learn
Library to build artificial datasets of controlled size and

dataset we generate 10,000 rec-
exemplifies 2 features of

es c1 and c2 was equal
otal set randomly splits

into two subsets: 25% training set, 75% test set. For the
training set, the class distribution remains unchanged.

prevalence value �����(c1) from

and TEST dataset items

{0.5, 0.5} and TEST_CD = {0.1, 0.9} re-
spectively (generated with 2 features).

For each prevalence value we generate a hundred dif-
nineteen hundred replications

of the following experimental design are applied.
Leibler Divergence (KLD) be-

tween the true class prevalence and the predicted class

learn.org/stable/modules/generated/sklearn.datasets.make_clas

prevalence as a quality evaluation metrics for quantif
ers.

3.2 Test Dataset

To evaluate the algorithms on the real data
pated in the SemEval-2016 Task 4 called “Sentiment
Analysis in Twitter”. Its dataset consists of
sages (aka observations) divided
Task 4 consists of five subtasks, but w
ed in subtasks D and E: tweet quantification according
to a two-point scale and five
These subtasks are evaluated
topics, and the final result is counted as an average of
evaluation measure out of all the topics
2016).

The organizers provide a default split of the data into
training, development and development
tasets. The algorithms evaluation is performed
these subsets. The training subset is used as a TRAIN
set, development and development
are used as a TEST set.

Since observation x in this dataset is a message wri
ten in a natural language, we first need to transform it to
the vector representation X. Based on a study by
and Sebastiani, 2015), we choose the following comp
nents of the feature vector:
 TFIDF for word n-grams with n

4

 TFIDF character n-grams where n
5.

Feature vector is extracted with a
We also perform data preprocessing
terns (e.g. links, emoticons, numbers) w
with their substitutes. For word n
matization using WordNetLemmatizer.

It is interesting to characterize messages using
SentiWordNet library. For each token
we obtain its polarity value from the SentiWordNet.
First, we recognize the part of speech using
tagger from the NLTK library
cond, we get the SentiWordNet first polarity value for
this token using the part of speech information.

We used polarity values to extend vector represent
tion of documents in two ways
the polarity score as a sum of positive minus
negative polarity values and add this feature to
tor representation of a document. Second
the sum of positive polarities and

3http://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html

a quality evaluation metrics for quantifi-

To evaluate the algorithms on the real data, we partici-
2016 Task 4 called “Sentiment

Its dataset consists of Twitter mes-
divided into several topics.

Task 4 consists of five subtasks, but we only participat-
D and E: tweet quantification according

point scale and five-point scale, respectively.
 independently for different

final result is counted as an average of
evaluation measure out of all the topics (Nakov et al.,

default split of the data into
training, development and development-time testing da-
tasets. The algorithms evaluation is performed using

raining subset is used as a TRAIN
set, development and development-time testing subsets

in this dataset is a message writ-
ten in a natural language, we first need to transform it to

. Based on a study by (Gao
, we choose the following compo-

grams with n varying from 1 to

grams where n varies from 3 to

extracted with a Scikit_Learn tool3.
We also perform data preprocessing .Several text pat-

links, emoticons, numbers) were replaced
For word n-grams we apply lem-

matization using WordNetLemmatizer.
It is interesting to characterize messages using the

SentiWordNet library. For each token xi in document X
obtain its polarity value from the SentiWordNet.

part of speech using a speech
NLTK library (Bird et al., 2009). Se-

get the SentiWordNet first polarity value for
part of speech information.

We used polarity values to extend vector representa-
tion of documents in two ways: first we simply calculate

sum of positive minus a sum of
negative polarity values and add this feature to the vec-

presentation of a document. Second, we calculate
sum of positive polarities and the sum of negative

learn.org/stable/modules/generated/sklearn.feature_extraction.

174

polarities and add these two features to the vector repre-
sentation of a document.

The metrics that we use to evaluate the classifier
performance are described in (Nakov et al., 2016) and
are not described here.

4 Experiment Results

We apply six quantification methods mentioned above
in Section 2: CC, PCC, ACC, PACC, EM, CDEIterate
and compare them.

4.1 Synthesized Data

First, we applied CC, PCC, ACC, PACC, EM and
CDEIterate algorithms to generated data described in
Section 3.1. Synthesized data allows us to perform a
comparative analysis of these quantification methods
with different amount of distribution drift.

In Figure3, which demonstrates the means and stand-
ard deviation values of the evaluation measure –
Kullback-Leibler Divergence (KLD), each point is ob-
tained by averaging over one hundred generated da-
tasets with different prevalence.

Figure 4: Mean and standard deviation values of Kullback-

Leibler Divergence for different distribution drifts in the
TEST set on the linear scale.

It is obvious from Figure 4 that the CDEIterate ap-
proach shows the lowest KLD mean values when a dis-
tribution drift is relatively large. A standard deviation
value for the CDEIterate method remains the smallest
one among all possible distribution drifts.

On the contrary, the EM approach shows very unsta-
ble results. Sometimes the EM algorithm converges far
from the real value. Its standard deviation displays the
same unstable behavior.

For more careful consideration, let us show its func-
tions in the logarithmic scale in Figure 5.

Figure 5: Mean and standard deviation values of Kullback-
Leibler Divergence for different distribution drifts in the

TEST set on the logarithmic scale.

When distribution changes from the starting value

ptrain(c) = 0.5 by less than 0.1, the simple methods like
CC and PCC show better performance (lower KLD).

4.2 Test Data

We noticed that CDEIterate methods sometimes con-
verge to different values, if an algorithm starts iteration
from a different starting point. To support this, we add

175

the COST_start variable to the algorithm shown in
Figure 2. The first starting point is a priori probability
distribution of a training set. Therefore, for the starting
iteration we assume TEST_CD to equal TRAIN_CD.
The second starting point is when TEST_CD is uni-
formly distributed. This case is labeled as
CDEIterate_U. In the previous Section 4.1, these two
starting points were actually the same.

Method Quantification accuracy measure
CC 0.102469788749
ACC 0.192896311253
PCC 0.24076249451
PACC 0.23644037492
EM 0.24076249451
CDEIterate 0.101057466171
CDEIterate_U 0.0886349793929

Table1: Comparison of methods on test sample with a two-
point scale (SemEval-2016 Task4 Subtask D).

Method Quantification accuracy measure
CC 0.940764808798
ACC 0.878280429893
PCC 1.02616631747
PACC 1.04546915144
EM 1.12790745311
CDEIterate 0.538279399063
CDEIterate_U 0.536691406139

Table 2: Comparison of methods ontest sample with a five-
point scale (SemEval-2016 Task4 Subtask E).

CDEIterate_U approach showed the best accuracy on

the testing set among others with both five-point and
two-point scales.

SentiWordNet is usually regarded as an important
source of information about word sentiment
(Baccianella et al., 2010; Esuli and Sebastiani, 2006). In
our comparison, we add the sum of positive scores and
the sum of negative scores of each word as two addi-
tional features to the feature vector. Only the first mean-
ing, according to the recognized part of speech, was
used. The quantification methods remain the same. The
results provided in Table 3, show that the new features
increase quantification accuracy for CC, ACC, but sur-
prisingly decrease it for PCC, PACC, EM, CDEIterate
and CDEIterate-U.

Method Quantification accuracy measure
CC 0.868282929268
ACC 0.861784553862
PCC 1.05532269963
PACC 1.0731851762
EM 1.11319538187
CDEIterate 0.58872710467
CDEIterate_U 0.587811269105

Table 3: Comparison of methods on test sample with a five-
point scale with additional SentiWordNet features (SemEval-

2016 Task4 Subtask E).

We explain this behavior as follows: simple algo-
rithms cannot adjust to the whole singularity and such
additional features increase dimension and, thereby, ac-
curacy. In a more complex case, the classifier extracts
information from features more efficiently. Additional
information about polarity scores leads to algorithm
overtraining. We can guess that, as tweets contain crea-
tive spelling and abbreviation common in Twitter (like
“lol”, not presented in SentiWordNet), the existence of
character n-grams contains more specific information
than polarity scores of selected, properly written words.
Therefore, we exclude SentiWordNet features from the
final feature vector.

5 Conclusion and future work

The aim of this research was to perform comparative
analysis of different approaches of state-of-the-art quan-
tification techniques.

For tweet quantification on a five-point scale (Sub-
task E) and a two-point scale (Subtask D), the best per-
formance was demonstrated by the adopted iterative
method proposed by (Xue and Weiss, 2009), based on
the iterative procedure with the cost-sensitive supervise
learner. All the algorithms mentioned in the article, are
available on the Github repository4.

In our future work, we are planning to move in two
directions. First, we plan to extend the vector of features
used for representation of documents. Second, we want
to add more quantification methods to our open source
library.

Acknowledgments

The reported study was funded by RFBR under research
Project No. 16-06-00184 A.

References

Stefano Baccianella, Andrea Esuli, and Fabrizio
Sebastiani. 2010. SentiWordNet 3.0: An Enhanced Lex-
ical Resource for Sentiment Analysis and Opinion Min-
ing. In LREC, volume 10, pages 2200–2204.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. O’Reilly
Media, Inc.

Yee Seng Chan and Hwee Tou Ng. 2006. Estimating
class priors in domain adaptation for word sense disam-
biguation. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th an-

4https://github.com/Arctickirillas/Rubrication

176

nual meeting of the Association for Computational Lin-
guistics, pages 89–96. Association for Computational
Linguistics.

Andrea Esuli and Fabrizio Sebastiani. 2006.
Sentiwordnet: A publicly available lexical resource for
opinion mining. In Proceedings of LREC, volume 6,
pages 417–422. Citeseer.

Andrea Esuli, Fabrizio Sebastiani, and Ahmed
ABBASI. 2010. Sentiment quantification. IEEE intelli-
gent systems, 25(4):72–79.

George Forman. 2005. Counting positives accurately
despite inaccurate classification. In Machine Learning:
ECML 2005, pages 564–575. Springer. bibtex: for-
man2005counting.

George Forman. 2008. Quantifying counts and costs via
classification. Data Mining and Knowledge Discovery,
17(2):164–206, June.

George Forman, Evan Kirshenbaum, and Jaap
Suermondt. 2006. Pragmatic text mining: minimizing
human effort to quantify many issues in call logs. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 852–861. ACM.

Wei Gao and Fabrizio Sebastiani. 2015. Tweet Senti-
ment: From Classification to Quantification. In Pro-
ceedings of the 2015 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Min-
ing 2015, pages 97–104. ACM. bibtex: gao2015tweet.

A. Guerrero-Curieses, R. Alaiz-Rodriguez, and J. Cid-
Sueiro. 2009. Cost-sensitive and modular land-cover
classification based on posterior probability estimates.
International Journal of Remote Sensing, 30(22):5877–
5899.

David J. Hand and others. 2006. Classifier technology
and the illusion of progress. Statistical science, 21(1):1–
14.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin
Stoyanov, and Fabrizio Sebastiani. 2016. SemEval-2016
Task 4: Sentiment Analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation (SemEval 2016), San Diego, California, June.
Association for Computational Linguistics. bibtex:
SemEval:2016:task4.

Marco Saerens, Patrice Latinne, and Christine
Decaestecker. 2002. Adjusting the outputs of a classifier

to new a priori probabilities: a simple procedure. Neural
computation, 14(1):21–41. bibtex:
saerens2002adjusting.

Lidia Sánchez, Víctor González, Enrique Alegre, and
Rocío Alaiz. 2008. Classification and quantification
based on image analysis for sperm samples with uncer-
tain damaged/intact cell proportions. In Image Analysis
and Recognition, pages 827–836. Springer.

Lei Tang, Huiji Gao, and Huan Liu. 2010. Network
quantification despite biased labels. In Proceedings of
the Eighth Workshop on Mining and Learning with
Graphs, pages 147–154. ACM.

Jack Chongjie Xue and Gary M Weiss. 2009. Quantifi-
cation and semi-supervised classification methods for
handling changes in class distribution. In Proceedings of
the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 897–906.
ACM. bibtex: xue2009quantification.

177

