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Abstract

This paper describes a classification system
that participated in SemEval-2016 Task 4:
Sentiment Analysis in Twitter. The proposed
approach competed in subtasks A, B, and C,
which involved tweet polarity classification,
tweet classification according to a two-point
scale, and tweet classification according to a
five-point scale. Our system is based on an en-
semble consisting of Random Forests, SVMs,
and Gradient Boosting Trees, and involves the
use of a wide range of features including: n-
grams, Brown clustering, sentiment lexicons,
Wordnet, and part-of-speech tagging. The
proposed system achieved 14", 6, and 3™
place in subtasks A, B, and C, respectively.

1 Introduction

In recent years, sentiment analysis (Liu, 2012) has
become a common yardstick for many new text min-
ing algorithms. This trend is a direct result of the
rapid growth of social media, where users express
their views and opinions regarding a wide range of
topics. As a result, social networks like Twitter
have become a crucial resource in product design,
assessing marketing campaigns, and detecting news
bursts (Liu, 2012; Mathioudakis and Koudas, 2010).

However, while the merits of resources such as
Twitter are evident, there are several difficulties with
the use of social media data. In contrast to classi-
cal sentiment analysis methods, which were origi-
nally designed for dealing with well-written prod-
uct reviews, texts from social media often contain
misspellings, letter substitutions, ambiguities, non-
standard abbreviations, and improper use of gram-
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mar (Sarker et al., 2015). Furthermore, resources
such as Twitter generate thousands of new texts per
second and introduce challenges characteristic for
stream processing (Krempl et al., 2014). Moreover,
the limited length of these texts makes classical n-
gram feature vectors extremely sparse, which in turn
hinders generalization abilities of classification al-
gorithms. Finally, sentiments are usually unevenly
distributed (Kiritchenko et al., 2014), resulting in
class imbalance and, therefore, additional difficul-
ties for classifiers (He and Garcia, 2009).

To promote research in this area, Task 4 of
SemEval-2016 was devoted to sentiment analysis
in Twitter. The task consisted of five subtasks in-
volving standard classification, ordinal classifica-
tion, and distribution estimation; for a more detailed
description see (Nakov et al., 2016).

In this paper, we present our approach to learn a
classification system which participated in subtasks
A, B, and C of SemEval-2016 Sentiment Analysis
in Twitter. The proposed approach combines Ran-
dom Forests, Support Vector Machines, and Gradi-
ent Boosting Trees, trained on a wide range of lex-
ical and semantic features including: n-grams, k-
grams, Brown clustering, sentiment lexicons, Senti-
WordNet, and part of speech tagged 1-grams. These
components were carefully combined and optimized
to create a separate version of the system for each of
the tackled subtasks.

In the following sections, we describe each group
of features used in our system. Moreover, we ex-
plain the details of the proposed classification algo-
rithm with respect to each realized subtask. Finally,
we conclude the paper with a discussion on the ob-
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tained results, importance of each feature group, and
possible lines of future research.

2 Basic Features

We briefly describe the features used in our system.
The same set of developed features was used in all
three subtasks our algorithms participated in. How-
ever, for some of the component classifiers we ad-
ditionally performed feature selection using a filter
method based on the F-statistic. Details on this sub-
ject will be discussed later.

2.1 Preprocessing

Prior to extracting features, we performed standard
natural language processing procedures to clean the
data. First, each tweet was tokenized into words,
hashtags, punctuation marks, and special symbols.
Next, tokens were lemmatized by NLTK Word-
NetLemmatizer! to unify different versions of the
same words. Subsequently, certain words were re-
moved based on a hand-crafted stop list. Finally,
certain symbols (urls, hashtags, numbers, percent-
ages, prices, dates, hours) that occurred less than five
times in the dataset were grouped according to their
meaning, and those tokens that could not be grouped
were removed from the training data.

2.2  Word n-grams

The first feature set consisted of word n-grams, i.e.,
sequences of n continuous words in a text segment.
For our system, we generated 1-, 2-, 3-, 4-, and 5-
grams based on all available tweet messages.

2.3 Negation n-grams

In addition to traditional n-grams, we also utilized
n-grams in negation context (Remus, 2013). Nega-
tion n-grams are sequences of words that appear in
a negated context. Negations were discovered based
on “not” and “n’t” tokens, and a negated context was
defined as a set of words falling between a negation
and a “terminal” punctuation symbol {.,;,,,!, 7}.
We used 1- and 2-negation-grams in our system.

2.4 Character k-grams

Another group of features was created by generat-
ing character k-grams. Character k-grams were cre-

lhttp://www.nltk.org/api/nltk.stem.html
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ated by extracting sequences of k£ continuous char-
acters from each word. To distinguish character-
grams from word-grams, we will refer to charac-
ter sequences as k-grams. We used 3-, 4-, and 5-
character-grams as features.

2.5 POS 1-grams

Another set of n-grams was created by using a part-
of-speech tagger. This approach combines words
with the part of speech they represent, in an attempt
to distinguish different meanings of the same word.
In our system, we used the NLTK PerceprtronTag-
ger’ to add concatenated {word, part-of-speech}
pairs as features.

2.6 Sentiment Lexicons

A major group of features used in our system was
formed by sentiment scores, which were created by
summing word-sentiment associations for a given
tweet. More precisely, for each tweet we counted the
number of words conveying each sentiment defined
in a given lexicon. We used this procedure for four
sentiment lexicons: the NRC emotion lexicon (Mo-
hammad and Turney, 2013), Hu and Liu Opinion
lexicon (Hu and Liu, 2004), the Multi-perspective
Question Answering corpus (Wiebe et al., 2005),
and SentiWordNet (Baccianella et al., 2010).

The NRC emotion lexicon is a list of words and
their associations with eight emotions (anger, fear,
anticipation, trust, surprise, sadness, joy, and dis-
gust) and two sentiments (negative and positive).
Combined this gives a total of ten real valued sen-
timent scores, which were added to our feature set.

The Opinion Lexicon, assembled by Hu and Liu,
consists of two lists: one containing positive and one
containing negative words. Because intensities of
these two sentiments are not specified, we counted
the occurrences of lexicon words in each tweet to
create two sentiment scores.

The  Multi-perspective  Question  Answer-
ing (MPQA) corpus contains four sentiment word
lists: positive, negative, both, and neutral. As with
the Opinion Lexicon, we counted the occurrences
of each in-lexicon word to create four additional
features.

Finally, the SentiWordNet is a sentiment tagged

2http://www.nltk.org/api/nltk.tag.html



wordnet. We used this network to find synsets (se-
mantical equivalents) of words and used their senti-
ment scores as features.

2.7 Hashtag Lexicon

An interesting addition to the aforementioned word
lexicons was the use of the NRC Hashtag Affir-
mative/Negated Context Sentiment Lexicon (Kir-
itchenko et al., 2014). This lexicon contains a real-
valued sentiment score associated with single words
and 2-grams designed specifically for Twitter. For
each tweet we calculated the minimal, maximal, and
mean sentiment score based on all words in a tweet.

2.8 Brown Clustering

Our final set of features was created using Brown
clustering (Brown et al., 1992). Brown clustering is
a form of hierarchical clustering of words based on
the contexts in which they occur. We used a precom-
piled clustering of English tweets into 1000 clusters
provided by Owoputi et al. (2013).

3 Classification
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The goal of subtask A was to correctly classify
tweets into three classes: positive, neutral, and nega-
tive. Macro-averaged F} score over the positive and
negative class was used as an evaluation metric. The
provided training set consisted of 5459 tweets® and
the test set, which was used for internal model veri-
fication and validation, consisted of 1806 tweets.

Gradient Boosting Trees (Friedman, 2001) is a
popular classifier which combines the idea of a
boosting ensemble and gradient descent optimiza-
tion. We have chosen it, because it proved to work
well in many data mining competitions and on a
variety of problems. GBT are also robust to very
sparse features, which makes them a good choice
for tweet classification.

In our system we used GBT with softmax as the
loss function, the maximum depth of a single tree
was set to 40 and no tree pruning was performed
afterwards. To prevent overfitting the L2 regular-
ization factor was added to the optimization func-

Multi-class classification (subtask A)

3The dataset provided by task organizers was a little bit big-
ger, but we report the number of tweets which we were able to
download successfully.
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tion. Additionally, to increase the diversity of the
model, each ensemble component was trained on a
subset of features. Each subset was constructed us-
ing randomly chosen 40% of the features. Further-
more, each tree component was trained on a random
sample of the training set which contained 80% of
the examples.

From the training set 10% of examples were ex-
tracted to form a validation set. This additional
dataset was used for verification of the early stop-
ping condition. After learning every new tree, the
performance of the whole classifier was verified on
the validation set in terms of macro-averaged F}
score. The lack of improvement during 30 itera-
tions triggered the early stopping condition and ter-
minated the ensemble construction. GBT was al-
ways fitted until the early stopping condition was
met, without any constraint on the maximal number
of ensemble components®*.

During initial experiments we discovered, that the
classifier made wrong predictions on negative and
neutral examples more often than on instances be-
longing to the positive class. The trained model
suffered from class imbalance, which often leads to
generalization problems of many classification tech-
niques (He and Garcia, 2009). Indeed, the dataset in
this subtask contains 2804 positive examples (51%)
together with only 781 negative (14%) and 1874
neutral (34%) examples.

To overcome this problem, inspired by solutions
in the field of cost-sensitive learning (He and Gar-
cia, 2009), we assigned each instance a weight w =
1/(c - |C;]) where |C;| is the number of examples
belonging to the true class of the i-th example in
the training set and c is the total number of classes
(in this subtask ¢ = 3). The use of such instance
weights in the loss function ensures that each class
is equally important for optimization, because the
sums of example weights for each class are equal.

We also tested Random Forests (Breiman, 2001)
and linear Support Vector Machines (Cortes and
Vapnik, 1995) classifiers. As preliminary exper-
iments showed that the performance of Random
Forests and SVM was sensitive to the increasing
number of features, we decided to carry out addi-

“In practice we always set the maximum number of itera-
tions to a big number (10000).



tional feature selection. Hence, we trained them
on 5000 best features selected by the F value of
ANOVA which improved micro-averaged F; and
also had a positive influence on training time. The
best results for Random Forest, according to macro-
averaged F7, were achieved when each leaf of a sin-
gle tree was enforced to contain at least three ex-
amples, the number of trees was equal to 5000 and
instance weighting (as described above) was used.
Also SVM gave best results with instance weight-
ing. Despite the fact that both Random Forests and
SVMs achieved results that were a little worse than
GBT (macro-averaged F} score was about 3% lower
for both of them) we decided to use them to refine
predictions of GBT.

Finally, our classification system is a heteroge-
neous multiple-classifier consisting of three differ-
ent components: Random Forests, Gradient Boost-
ing Trees, and Support Vector Machines. Each of
them is trained on the same training set and the fi-
nal classification of the ensemble is a result of sim-
ple majority voting. We use a well-known scikit-
learn (Pedregosa et al., 2011) implementation of
Random Forests, and SVMs in Python as well as a
very effective Gradient Boosting Trees implementa-
tion from the XGBoost library>.

3.2 Binary classification (subtask B)

The goal of subtask B also involved the classification
of tweets, however, only two classes (positive and
negative) were considered. Just as in subtask A, the
dataset was highly imbalanced: only 17% (679) of
examples were negative.

In subtask A we could not use more advanced
methods for tackling class imbalance since most
of them are designed for binary classification only.
One of such techniques is Roughly Balanced Bag-
ging (Hido et al., 2009), which proved to give the
best results among extensions of bagging for class
imbalance (Btaszczyrski and Stefanowski, 2015).

RBBag learns each base classifier on a random
sample of the training set and then the final class
prediction is a result of averaging predictions of
components. The main difference between classi-
cal bagging and RBBag is its specialized sampling
scheme. First, the training set is divided into two

Shttps://github.com/dmlc/xgboost
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subsets, each containing examples from only one
class. From the subset containing minority exam-
ples, RBBag creates a classical bootstrap sample
which contains /N instances, where N is the num-
ber of minority examples in the training set. To this
sample, M majority examples are added randomly
where M is not the number of majority examples,
but it is taken from a negative binomial distribution
with parameters p = 0.5 and n = N.

We used Roughly Balanced Bagging with GBT
as the base classifier. All parameters of GBT were
set just like described in section 3.1, however during
experiments different learning rates and regulariza-
tion factors were selected. Additionally, RBBag was
tested with 5, 7, 15 and 30 base classifiers, but the
best results were obtained for 7 GBTs, which con-
firms earlier observations of Lango and Stefanowski
(2015) that RBBag does not require many compo-
nents to achieve good performance.

3.3 Ordinal classification (subtask C)

Subtask C concentrated on classifying tweets into
5 classes: very negative, negative, neutral, positive
and very positive. Since the order in the classes is
established, this subtask can be considered as an or-
dinal classification problem.

We implemented an ensemble algorithm de-
scribed by Frank and Hall (2001), which decom-
poses ordinal classification into several binary clas-
sification problems. Each classifier is trained on the
same training set, but the class label of every exam-
ple is changed by the function I(x.4ss > @) where
I() is an indicator function, z.,ss is a class of a
given example and 7 is the reference class. The ref-
erence class for the first classifier is “very negative”,
for the second “negative” etc. Finally, we have four
classifiers and each of them returns the likelihood of
a positive response to the question “is the class of the
analyzed example higher than the reference class”.
The final set of likelihoods can be easily transformed
to the likelihood of every class.

Again, we used GBT as a base classifier with the
same setup as described in section 3.1. However,
we also tested linear SVM, Random Forests, Fac-
torization Machines (Rendle, 2010) and transduc-
tive SVMs (Joachims, 1999). Linear SVM achieved
results very similar to GBT in terms of macro-
averaged mean absolute error (M AEM). Despite



this fact, during the analysis of responses of both
classifiers on the test set, for several examples we
discovered significant differences in responses (e.g.
“very negative” vs “positive”). Since both models
performed almost equally good and M AE™ highly
punishes significant differences between classes on
the ordinal scale, we decided to create a meta-
classifier from these two models. In our ensemble
the final prediction is an average of predictions of
GBT and SVM-based models, which is rounded to-
wards the decision of the GBT-based model (since
its M AEM score was a little higher).

4 Results and feature analysis

This section includes the experimental results of our
system for all three sub-tasks. We present the scores
and ranks achieved by our system followed by a dis-
cussion on the relative importance of the proposed
features.

The evaluation metric was different in each sub-
task (Nakov et al.,, 2016). For subtask A, it was
required to optimize the macro-averaged F7j-score
(FM) calculated over the positive and negative
classes. In subtask B, the goal was to achieve a high
macro-averaged recall (R*), while subtask C took
into account a macro-averaged mean absolute error
(M AE™). Table 4 presents the overall performance
of our system.

Subtask | Metric Our score | Best score | Rank
A M 0.576 0.633 14
B RM 0.763 0.797 6
C MAEM 0.860 0.719 3

Table 1: Overall performance of the system.

We also performed an analysis of feature impor-
tance using one trained Gradient Boosting Trees
classifier (GBT). For this classifier the feature im-
portance can be easily measured by observing the in-
crease of purity while performing splits on a partic-
ular feature, following an approach from (Breiman
and Friedman, 1984).

In subtasks A and C we used a meta-classifier
of many different algorithms, so the results would
not accurately reflect the feature importance in the
whole system. Hence, we decided to run this exper-
iment on the dataset from subtask B only.

Table 2 presents 15 features with the highest rel-
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ative importance in our classifier. The most im-
portant feature was the mean of word sentiments
in a tweet according to the NRC Hashtag Lexicon
(the maximum word sentiment on this lexicon is
also pretty high in the ranking). Other lexicon fea-
tures, based on the Opinion Lexicon and SentiWord-
Net, also achieved high relative importance. Note
that many features with high importance come from
Brown clustering and k-grams.

In Table 3, we present results of feature impor-
tance aggregated in groups. The most important fea-
tures are those created from character k-grams and
their total relative importance is almost 70%. The
contribution of features created from Brown cluster-
ing, negated n-grams and from n-grams with part-of-
speech tags is also very significant. The importance
of the rest of the features sums up to only 10%. The
poor results of lexicon-based features can be justi-
fied by the fact that the number of features in these
groups is very small (from 2 to 8 features).

Feature name Rel. impor. [%]
NRC Hashtag Lexicon: mean 0.79
Brown cluster: 01110110 0.73
SentiWordNet: sum of negative 0.63
5 k-gram: “d &am” 0.55
Brown cluster: 1110011001111 0.49
NRC Hashtag Lexicon: max 0.48
Opinion Lexicon: negative 0.47
Brown cluster: 111101011101 0.42
3 k-gram “ok ”’ 0.41
4 k-gram “ nor” 0.40
Brown cluster: 0100100 0.38
3 k-gram “ NY” 0.35
2 n-gram: not against 0.35
Brown cluster: 111101111100100 0.34
5 k-gram “ Anth” 0.34

Table 2: Relative feature importances (%) of top 15 features.

For Random Forests and SVM we used feature
selection according to the F-statistics. We analyzed
how features selected by this approach relate to im-
portances estimated by GBT.

Surprisingly, feature importances estimated by
the F-statistic and GBT are quite coherent. Al-
most 80% of features selected by the F-statistic were
character-grams, 12% of features were negated n-
grams, and features from POS constituted 3,9% of
all selected features. The main difference between
these two methods is that the F-statistic selected



Feature group Rel. impor. [%]
5 character-gram 26.03
4 character-gram 21.75
3 character-gram 21.74
Brown clusters 6.92
Negated 1-gram 6.62
1-gram + POS 4.24
Negated + 2-gram 3.48
1-gram 2.69
2-gram 1.87
NRC Hashtag Lexicon 1.49
SentiWordNet 1.00
NRC Lexicon 0.93
Opinion Lexicon 0.62
3-gram 0.34
MPQA corpus 0.25
4-gram 0.03

Table 3: Relative feature importances (%) for features groups.

only one feature from Brown clustering. How-
ever, once again simple n-grams were used very
rarely (2% of all selected features). This result, to-
gether with earlier observations from importances
estimated by GBT, seem to show that features cre-
ated from character-grams are superior to those cre-
ated by word-grams. It is also worth mentioning
that the entire GBT model used only 3579 features,
which is an indicator of its feature selection abilities.

5 Conclusions and Future Work

Our system achieved relatively good performance in
SemEval-2016 Task 4: Sentiment Analysis in Twit-
ter. Among 34 participants of subtask A we reached
rank 14, we took 6™ place among 19 competitors in
subtask B, and won 3™ place in subtask C where 11
teams competed. The analysis of features used by
our system shows that character-grams seem to per-
form better than word n-grams for Twitter’s short-
text messages. Furthermore, results obtained by
Gradient Boosting Trees in our system confirmed
good feature filtering capabilities of this algorithm.

One possible way to further improve our system
could be to transfer features selected by GBT to
other classifiers (e.g. SVM). Another possible line
of the future research is the development of new
features based on character-grams, such as negated
character-grams or character-gram lexicons.
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