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Abstract

The paper describes experiments on sentiment
classification of microblog messages using an
architecture allowing general machine learn-
ing classifiers to be combined either sequen-
tially to form a multi-step classifier, or in par-
allel, creating an ensemble classifier. The sys-
tem achieved very competitive results in the
shared task on sentiment analysis in Twitter,
in particular on non-Twitter social media data,
that is, input it was not specifically tailored to.

1 Introduction

As a growing platform for people to express them-
selves on a global scale, Twitter has become exceed-
ingly attractive as an information source. In addi-
tion to text, a tweet comes with metadata such as the
sender’s location and language, and hashtags, mak-
ing it possible to quickly gather vast amounts of data
regarding a specific product, person or event. With a
working Twitter Sentiment Analysis system, compa-
nies could get a feel of what consumers think of their
products, or politicians could estimate their popular-
ity amongst Twitter users in specific regions.

However, tweets and other informal texts on so-
cial media are quite different from texts elsewhere.
They are short in length and contain a lot of abbre-
viations, misspellings, Internet slang, and creative
syntax. Although the relative occurrence of non-
standard English syntax is fairly constant among
many types of social media (Baldwin et al., 2013),

∗Thanks to Mikael Brevik, Jørgen Faret, Johan Reitan and
Øyvind Selmer for their work on two previous NTNU systems.

analysing such texts using traditional language pro-
cessing systems can be problematic, primarily since
the main common denominator of social media
text is not that it is informal, but that it describes
language in rapid change (Androutsopoulos, 2011;
Eisenstein, 2013), so that resources targeted directly
at social media language quickly become outdated.

Twitter Sentiment Analysis (TSA) has been a
rapibly growing research area in recent years, and a
typical approach to TSA has been identified, using a
supervised machine learning strategy, consisting of
three main steps: preprocessing, feature extraction
and classifier training. Preprocessing is used in order
to remove noise and standardize the tweet format,
for example, by replacing or removing URLs. De-
sired features of the tweets are then extracted, such
as sentiment scores using specific sentiment lexica
or the occurrence of different emoticons. Finally, a
classifier is trained on the extracted features.

Since the machine learning algorithms used com-
monly are supervised, sentiment-annotated data is
a prerequisite for training — and the growth of the
TSA research field can largely be attributed to the In-
ternational Workshop on Semantic Evaluation (Sem-
Eval) having run shared tasks on this theme since
2013 (Wilson et al., 2013), annually producing new
annotated data. The SemEval-2016 version (Task 4)
of the TSA task and the data sets are described by
Nakov et al. (2016). Here we will specifically ad-
dress Subtask A, which is a 3-way sentiment polar-
ity classification problem, attributing the labels ‘pos-
itive’, ‘negative’ or ‘neutral’ to tweets.

The rest of the paper is laid out as follows: Sec-
tion 2 describes a general architecture for building
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Figure 1: Overview of the core system architecture

Twitter sentiment classifiers, drawing on the expe-
riences of developing two previous TSA systems
(Selmer et al., 2013; Reitan et al., 2015). Section 3
reports the application of such a system (‘NTNU-
SentEval’) to the SemEval data sets, while Section 4
points to ways that the results could be improved.

2 Sentiment Classifier Architecture

To solve the three-way sentiment classification task,
a general multi-class classifier, BaseClassifier, was
created. Utilizing a general methodology enables
the combination of several BaseClassifiers in vari-
ous ways, either sequentially to create a multi-step
classifier, or in parallel, as a classifier ensemble.

The BaseClassifier consists of three steps: pre-
processing, feature extraction, and then either classi-
fication or training. These are handled by a Pipeline
object built in the Scikit-Learn Python machine
learning library (Pedregosa et al., 2011). Scikit-
Learn Transformer objects are used to extract or
generate feature representations of the data. Fig-
ure 1 illustrates the overall architecture of the sys-
tem. When creating a BaseClassifier instance, a set
of parameters is specified, including the classifica-
tion algorithm, the preprocessing functions to use,
and options for each of the transformers. The pre-
processing methods invoked depend on the trans-
formers and the features they aim to extract.

2.1 Preprocessing

The preprocessing step modifies the raw tweets be-
fore they are passed to feature extraction: noise is fil-
tered out and negation scope is detected. The filter-
ing consists of a chain of simple methods using regu-
lar expressions. There are ten basic filters that can be
invoked, six of which replace various twitter-specific
objects with the empty string: emoticons, username

mentions, RT (retweet) tags, URLs, only hashtag
signs (#), and hashtags (incl. the string following
the sign). The other four filters transform uppercase
characters to lowercase, remove non-alphabetic or
space characters, limit the maximum repetitions of
a single character to three, and perform tokenization
using Pott’s tweet tokenizer (Potts, 2011).

Negation detection uses a simple approach where
n words appearing after a negation cue, but before
the next punctuation mark, are marked as negated.
The negation cues were adopted from Councill et
al. (2010), supplemented by five common mis-
spellings obtained by looking up each negation cue
in TweetNLP’s Twitter word cluster (Owoputi et al.,
2013): anit, couldnt, dnt, does’nt, and wont.

2.2 Feature Extraction
The feature extraction is implemented as a Scikit-
Learn Feature Union, which is a collection of inde-
pendent transformers (feature extractors), that build
a feature matrix for the classifier. Each feature
is represented by a transformer. Eight such trans-
formers have been implemented: two extract the
number of punctuations (repeated alphabetical and
grammatical signs) and the number of happy and
sad emoticons found in the tweet. Two other trans-
formers extract TF–IDF values for word n-grams
and character n-grams using a bag-of-words vector-
izer implementation, which is an extension of Scikit-
Learn’s default TfidfVectorizer.

A part-of-speech transformer uses the GATE
TwitIE tagger (Derczynski et al., 2013) to assign
part-of-speech tags to every token in the text; the tag
occurrences are then counted and returned. A word
cluster transformer counts the occurrences of differ-
ent TweetNLP word clusters (Owoputi et al., 2013),
that is, if a word in a tweet is a member of a cluster,
a counter for that specific cluster is incremented.

The last two transformers are essentially lexical:
the VADER transformer runs the lexicon-based so-
cial media sentiment analysis tool VADER (Hutto
and Gilbert, 2014) and extracts its output. VADER
(Valence Aware Dictionary and sEntiment Rea-
soner) goes beyond the bag-of-words model, taking
into consideration word order and degree modifiers.

The lexicon transformer is a single transformer
using a combination of six automatically and man-
ually annotated prior polarity sentiment lexica. The
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automatically annotated lexica used are NRC Senti-
ment140 and HashtagSentiment (Kiritchenko et al.,
2014), that contain sentiment scores for both uni-
grams and bigrams, where some are in a negated
context. Similarly, two manually annotated lexica,
AFINN (Nielsen, 2011) and NRC Emoticon (Mo-
hammad and Turney, 2010), give a sentiment score
for each word (AFINN) or each emoticon (NRC
Emoticon). However, two further manually anno-
tated lexica, MPQA (Wilson et al., 2005) and Bing
Liu (Ding et al., 2008), do not list sentiment scores
for words, but only whether a word contains positive
or negative sentiment. For those two lexica, nega-
tive and positive word sentiments were mapped to
the scores −1 or +1, respectively.

For all lexica, four different features were ex-
tracted from each tweet. Following Kiritchenko et
al. (2014), the four features for manually annotated
lexica are the sums of positive scores and of nega-
tive scores for words in both affirmative and negated
contexts, while the four features for automatically
annotated lexica comprise the number of unigrams
or bigrams with sentiment score 6= 0, the sum of all
sentiment scores, the highest sentiment score, and
the score of the last unigram or bigram in the tweet.

2.3 Classification

After all desired features have been extracted, a
BaseClassifier instance allows for the use of state-
of-the-art classification algorithms such as Support
Vector Machines (SVM), Naı̈ve Bayes and Maxi-
mum Entropy (MaxEnt). Scikit-Learn includes a se-
ries of implementations of the SVM algorithm (Vap-
nik, 1995). The NTNUSentEval system uses the
SVC variant, also known as C-Support SVM classi-
fier since it is based on the idea of setting a constant
C to penalize incorrectly classified instances. High
C values create a narrower margin, enabling more
elements to be correctly classified. However, this
can lead to overfitting, so it is desirable to perform
some kind of parameter optimization to find the best
C value. For multi-class classification, Scikit-Learn
uses a One-vs-One method with a run time com-
plexity more than quadratic to the number of ele-
ments; however, this is not a problem for our rela-
tively small (under 10,000 elements) datasets.

A single BaseClassifier acts as a one-step clas-
sifier, but by chaining BaseClassifiers sequentially,

Figure 2: Data flow in the two-step classifier

a multi-step classifier can be created. Each classi-
fier can be trained independently on different data,
thereby learning a different classification function.
Figure 2 illustrates how chaining two BaseClassi-
fiers can create a two-step classifier. The first Base-
Classifier is trained only on data labeled as subjec-
tive or objective, while the second BaseClassifier
is trained only on subjective data, labeled positive
or negative. When classifying, if the first Base-
Classifier classifies an instance as subjective, the in-
stance is forwarded to the second BaseClassifier to
determine if it is positive or negative. The results
from both classifiers are then combined and the final
classification is returned.

By combining BaseClassifiers in parallel, an en-
semble of classifiers can be created. Each of the
classifiers is independent of the others and all clas-
sify the same instances. In the end, the classifiers
vote to decide on the classification of an instance.
Since the BaseClassifiers are so general, it is pos-
sible to create BaseClassifiers that extract different
features, do different preprocessing, or use different
classification algorithms — and then combine these
to create an ensemble system.

2.4 Parameter Optimization

In order to find the optimal parameter values for
the NTNUSentEval system, an extensive grid search
was performed through the Scikit-Learn framework
over all subsets of the training set (shuffled), us-
ing stratified 5-fold cross-validation and optimizing
on F1-score. During development we were able
to find parameters that yielded better results on the
complete test set than the parameters from the grid
search. However, the optimal parameters are those
that perform best on average, and using the parame-
ters identified through development when presented
with new data would most likely perform worse than
using the parameters identified through grid search.
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Word n-grams X X X X X
Char n-grams X X X X X X
Lexicon X X X X X X X
PoS Tagger X X X X X
Word Clusters X X X X X X
Punctuation X X
Emoticons X
VADER X X X X

Table 1: Preprocessing used by feature extractors

Parameter n-grams LexiconWord Character

n-range (1, 5) (3, 6) N/A
use idf True True N/A
min df 0.0 0.0 N/A
max df 0.5 0.5 N/A
negation length 4 None -1

Table 2: Optimal parameter settings

As described in Section 2.2, a total of eight dif-
ferent feature extractors have been implemented, all
of which can be enabled or disabled. Each feature
extractor utilizes a specific preprocessor setting, as
shown in Table 1. Further, there are three option
settings for the SVM algorithm: type, kernel and
C, which after grid search were set to SVC, Linear,
and 0.1, respectively. In addition to the preproces-
sor options, there are eleven more feature extractor
options, whose grid-searched optimal values are dis-
played in Table 2, where n-range gives the lower and
upper n-gram sizes, use idf enables Inverse Docu-
ment Frequency weighting, min df and max df give
the proportions of lowest resp. highest document
frequency occurring terms to be excluded from the
final vocabulary, and negation length the maximum
number of tokens inside a negation scope.

3 Experimental Results

The NTNUSentEval TSA system was trained on the
Twitter training set (8,748 tweets), using the opti-
mal parameters identified through grid search, and
tested on the SemEval Twitter test sets from 2013
and 2014. The complete results on these test sets are
shown in Table 4 below, while Nakov et al. (2016)

give the results on all test sets, including the un-
known 2016 tweet set, in terms of the official eval-
uation metric, FPN

1 , which is the average of the F1-
scores on the negative and the positive tweets.

Notably, our system performed extremely well
on the out-of-domain test sets (i.e., the non-Twitter
data), being the best of all 34 participating systems
on the 2013-SMS set (with a 0.641 FPN

1 score, com-
pared to a 0.190 FPN

1 baseline), the 3rd on the 2014-
Live-journal set (FPN

1 = 0.719, with a 0.272 base-
line), and overall tied for first on the out-of-domain
data, supporting our claim that the approach taken
in itself is quite general. However, the lack of do-
main fine-tuning of the system showed in compar-
ison to the best systems on Twitter data, with the
NTNUSentEval system consistently placing 11–13
on the different test sets, including 11th on the 2016
set (FPN

1 = 0.583, with baseline 0.255).

3.1 Ablation Study
In order to detect the overall importance or impact
each feature has, a simple ablation study was con-
ducted by removing each feature in turn and check-
ing how the performance of the system was affected.
The results of this study are shown in Table 3.

Evidently, the single most important feature is
Sentiment Lexica. On the 2013-test set, system ac-
curacy is reduced from 0.7227 to 0.6945 when the
feature is removed, while the effect of removing it
when testing on the 2014 set is not as apparent. A
possible reason for this difference may be that most
of the sentiment lexica used were created at the same
time as the 2013-test set, and they might thus better
reflect the language in that period of time. As noted
in Section 1, the language of social media is rapidly
changing, so that a lexicon created in 2013 might
have reduced value already for data collected a year
later. This effect is also noticable when testing the
system on the 2014-test set, where the VADER Sen-
timent feature is the most important one, reducing
the accuracy from 0.6905 to 0.6793 when being re-
moved. On the 2013-test set, the VADER Sentiment
feature, which was created in 2014, does not have
the same impact, again indicating a change in how
the language is used and that VADER might better
reflect the Twitter language of 2014.

The second most important contribution comes
from the n-gram features. The removal of both char-
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Features 2013-test 2014-test

All .7227 .6905

- Word n-grams .7136 .6892
- Character n-grams .7085 .6885
- Both n-grams .7017 .6872

- Automatic Lexica .7088 .6799
- Manual Lexica .7085 .6938
- All Sentiment Lexica .6945 .6826

- Word Clusters .7166 .6872

- Part-of-Speech tag counts .7159 .6865
- Punctuation counts .7143 .6932
- Emoticons counts .7156 .6918
- All counts .7127 .6925

- VADER Sentiment .7114 .6793

Table 3: Feature ablation study results (F1-scores)

acter n-grams and word n-grams lead to a degrada-
tion in performance. On the 2013-test set the degra-
dation in performance is quite significant, while on
the 2014-test set the degradation is more subtle.

Another interesting result is the impact of the
Emoticons and Punctuation count features. On the
2013-test set, removing them gives a slight reduction
in performance, while on the 2014-test set we can
observe a slight increase in performance. One pos-
sible reason for this could be that the way emoticons
and punctuation are used in tweets changes over
time, but the most likely cause is merely noise in
the data. Although causing slightly increased or de-
creased performance, the individual count features
do not significantly affect the overall results.

3.2 Architectural Experiments

Two instances of the BaseClassifier can be chained
sequentially creating a 2-step classifier. Such a clas-
sifier was tested on the 2013 and 2014 test sets, as
shown in Table 4. The 2-step classifier performs
worse than the 1-step classifier on the 2013 set,
while their performances on the 2014 set are com-
parable, so based on these results it is not clear that
1-step classification is better than 2-step.

The GATE TwitIE part-of-speech tagger uses an
underlying model when tagging tweets. In addition
to the standard best performing model, another high-
speed model trading 2.5% token accuracy for half

Data Precision Recall F1 Accuracy Time

1-step classifier
2013 .7370 .6639 .6848 .7227 106.97
2014 .7031 .6619 .6691 .6905 53.01

2-step classifier
2013 .7278 .6526 .6729 .7172 118.36
2014 .7079 .6570 .6676 .6912 59.6

1-step classifier with fast PoS tagging
2013 .7364 .6639 .6846 .7221 80.13
2014 .7032 .6591 .6673 .6892 41.03

Table 4: Sentiment classifier performance

the tagging speed is available, and the results from
testing BaseClassifier using the high-speed tagger
model are also shown in Table 4. Although a slight
reduction in performance can be observed compared
to using the best tagger model, the high-speed model
significantly reduced the total execution time, from
107 to 80 seconds on the 2013-test set and from 53
to 41 seconds on the 2014-test set.

4 Conclusion and Future Work

Drawing on the experiences from two previous Twit-
ter Sentiment Analysis systems (Selmer et al., 2013;
Reitan et al., 2015), a new TSA system was created
using a simplified and generalised architecture, al-
lowing for accurate and fast tweet classification.

As seen in the ablation study of Section 3.1, the
Sentiment Lexica is the single most important fea-
ture, while also being one of the simplest: our im-
plementation is based only on summing up the sen-
timent value of each word. A possible improvement
would thus be to extract more information by con-
sidering the order of the words, part-of-speech tags,
and degree modifiers, such as ‘very’, ‘really’ and
‘somewhat’, that can affect the sentiment value of
the following word. These modifiers are currently
not handled by the Sentiment Lexica extractor, yet
they clearly carry a lot of sentiment weight.

Another interesting feature of lexicon-based sys-
tems is their good run-time performance, which is
also confirmed in our system, where the lexicon fea-
ture extractor is one of the fastest feature extractors.
This is a particularly important property for a TSA
system to be useful in a real world setting, as the
opinion mining accuracy confidence depends on the
number of opinions examined.
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