
Proceedings of SemEval-2016, pages 92–95,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

ISTI-CNR at SemEval-2016 Task 4: Quantification on an Ordinal Scale

Andrea Esuli
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

via G. Moruzzi, 1
56124, Pisa, ITALY

andrea.esuli@isti.cnr.it

Abstract

This paper details on the participation of ISTI-
CNR to task 4 of Semeval 2016. Among
the five subtasks, special attention has been
paid to the five-point scale quantification sub-
task. The quantification method we pro-
pose is based on the observation that a
standard document-by-document regression
method usually has a bias towards assigning
high prevalence labels. Our method models
such bias with a linear model, in order to com-
pensate it and to produce the quantification es-
timates.

1 Introduction

The participation of ISTI-CNR to task 4 of Semeval
2016 (Nakov et al., 2016) produced submissions for
all the five proposed subtasks.

Submissions for subtasks A and B are based
on a relatively typical machine learning pipeline,
with B used as the base classification tool for sub-
task D, which uses a quantification via classifica-
tion method. Subtask C uses an ordinal regression
method, based on building a data-balanced tree of
binary classifiers. The regression method of sub-
task C has been used as the base regression tool for
the implementation of the quantification method for
subtask E.

We propose a novel quantification method for
subtask E, tweet quantification according to a five-
point scale. The method stems from the intuition
of measuring and compensating the bias a regres-
sion model may have for the labels with high preva-
lences.

All the code we produced for these tasks is mainly
based on the scikit-learn python library (Pedregosa
et al., 2011) and it is published under an open source
license1.

The next sections detail on the data and methods
adopted to produce the five submissions.

2 Training data

The labeled training dataset has been downloaded
using the tool suggested by the organizers2. Table 1
summarizes the total number of tweets available for
download at the time of crawling (November 2015).
The final number of tweets used to train the classi-
fiers, or quantifiers, is 6223 for subtasks A, C and E,
and 4475 for subtasks B and D.

A small number of tweets in the dataset appeared
multiple times, some with conflicting labels. In the
“train” data parts, for example, 25 tweets appeared
twice for subtasks A, C, and E, six of them with
conflicting labels for subtask A, and 14 with con-
flicting labels for subtasks C and E3. For subtasks
B, D, the number of tweets appearing twice in train-
ing is 13, one of them with conflicting labels. Du-
plicate tweets have been reduced to a single instance
and those with conflicting labels have been excluded
from the dataset and from any analysis performed in
this work.

1https://github.com/aesuli/
semeval2016-task4

2https://github.com/aritter/twitter_
download

3Subtask A uses a coarse-grained three-point scale, so it may
happen that a conflicting ‘-1’/‘-2’ labeling of a tweet for sub-
tasks C and E is reduced to a non-conflicting ‘negative’ labeling
for subtask A.

92

subtask set labeled downloaded
A train 6000 3804
A dev 2000 1229
A devtest 2000 1190
A all 10000 6223
C,E train 6000 3804
C, E dev 2000 1229
C, E devtest 2000 1190
C, E all 10000 6223
B, D train 4346 2764
B, D dev 1325 836
B, D devtest 1417 875
B, D all 7088 4475

Table 1: Number of tweets with labeling provided by the orga-

nizers and number of such tweets available for download at the

time of crawling.

Training data for subtasks A and B has been en-
riched by adding 5331 positive and 5331 negative
sentences extracted from movie reviews, which are
part of the movie review dataset (Pang and Lee,
2005)4. Even though these sentences are domain-
specific, they are deemed to contribute to the learn-
ing process by enriching the vocabulary of expres-
sions used to denote positive and negative senti-
ments. The final training set for subtask A is thus
composed of 16885 examples, and 15137 for sub-
task B.

2.1 Features

The transformation of each tweet into its vectorial
representation uses a relatively simple processing.
The text of each tweet is tokenized, stopwords are
removed. Word bigrams and trigrams, and charac-
ter fourgrams are added to representation. Regu-
lar expressions are used to detect mentions, hashtag,
URLs, and emoticons, and metafeatures for each of
these special type of information are added to the
representation, e.g., if a tweet has two hashtags, the
’ hashtag’ feature with frequency two is added
to the representation of the tweet. The vectors are
weighted by tf · idf . Feature selection based on χ2
is used to retain only the x most informative fea-
tures, with x determined for each subtask with a

4http://www.cs.cornell.edu/people/pabo/
movie-review-data/

method MAEM

BBTOR 0.927
DDAG 1.227
SVORIM 1.066

Table 2: Subtask C: comparison of ordinal regression methods,

based on 10-fold cross-validation on training data.

cross-validation on training data.

3 Subtasks A and B: classification

A linear SVM has been used for for both classifica-
tion tasks: a simple binary classifier for subtask B,
and three one-vs-all binary classifiers for subtask A.
The value of the parameter C of the SVM has been
determined with a cross-validation on training data.

4 Subtask C: regression

The Balanced Binary Tree for Ordinal Regression
(BBTOR) method we designed for subtask C is
based on building a tree of binary classifiers that re-
cursively split the ordinal scale on the points of max-
imum balance in the number of training example as-
signed to the two sides of the binary classification
problem.

For example, let’s suppose to have a dataset
with the following distribution of training examples:
|c1| = 20, |c2| = 10, |c3| = 20, |c4| = 30,
|c5| = 50, where |ci| = n means that label ci has n
training examples. The first binary classifier learns
to separate {c1, c2, c3} from {c4, c5}, given that the
partion with 50 vs 80 training examples is the most
balanced one5. Then two second-level binary classi-
fiers are trained on the {c1, c2} vs {c3} split and the
{c4} vs {c5} split. The training is completed learn-
ing a {c1} vs {c2} classifier. A linear SVM is used
to train the binary classifier, optimizing its C param-
eter with a cross-validation on training data.

This approach is in line with the proposal of Data-
Balanced Nested Dichotomies of Dong et al. (2005)
for multi-class problems, and extends it to consider
the ordinal relations between labels. The method has
been compared in cross-validation experiments on

5Note that also the {c1, c2, c3.c4} from {c5} split produces
an equivalent 80 vs 50 split. A second criterium is to prefer the
splits in which also the number of labels is more balanced. In
case of a tie also on the second criterium a random choice is
made.

93

method KLD

CC 0.742
ACC 0.756
PCC 0.230
PACC 0.319

Table 3: Subtask D: comparison of binary quantification meth-

ods, based on leave-one-topic-out validation on training data.

method EMD

RC 0.547
ARC 0.374

Table 4: Subtask E: comparison of ordinal regression quan-

tification methods, based on leave-one-topic-out validation on

training data.

training data against other regression methods, i.e.,
SVORIM (Chu and Keerthi, 2007), based on linear
regression, and DDAG (Aiolli et al., 2009), based
on binary classifiers, and produced the best perfor-
mance.

5 Subtask D: binary quantification

Four quantification methods based on classification
have been compared, following the works of Forman
(2008) and Bella et al. (2010). The four methods
are: classify and count (CC), in which a classifier
is applied to the test documents and the prevalences
are determined by counting the documents assigned
to each label; adjusted classify and count (ACC), in
which the output of the CC method is corrected to
take into account the bias in error towards one of
the two labels the classifier may have; probabilis-
tic classify and count (PCC) in which the contribu-
tion of each document to the counting is weighted on
the confidence the classifier has on the assignment;
probabilistic adjusted classify and count (PACC)
which is the ACC method applied to the probabilis-
tic model of PCC. From a cross validation on train-
ing data, in which each topic has been in turn used
as test data and the remaining as training data, the
PCC performed best and it was thus used for the fi-
nal submission.

6 Subtask E: quantification on an ordinal
scale

Two methods have been compared for subtask E.
One is a simple regress and count (RC) method in
which the BBTOR method used in subtask C is ap-
plied to documents of a topic and then the quantifi-
cation values for the topic is determined by counting
the number of documents assigned to each slot in the
ordinal scale. We propose the adjusted regress and
count (ARC) method, that is based on the intuition
to measure, and compensate, the typical bias of re-
gression methods to assign documents to the slots in
the ordinal scale that have higher prevalences.

Let’s denote the prevalences for a topic-label pair
with pj(ci), where j indicates a topic in the set of
topics {t1, . . . , tn} and i a label in the set of ordered
labels {c1, . . . , cm} that form the ordinal scale. On
a given set of topics, the cumulative prevalence for
each label is denoted as P (ci) =

∑n
j=1 pj(ci).

Given a quantification method that produces estima-
tions p̂j(ci), its cumulative prevalences are denoted
as P̂ (ci) =

∑n
j=1 p̂j(ci).

Under the hypothesis of a linear error model,
knowing the estimate prevalences and the cumula-
tive correct and estimate prevalences on a set of top-
ics, the true prevalence for a topic can be determined
as:

pj(ci) '
P (ci)

P̂ (ci)
p̂j(ci) = wip̂j(ci) (1)

Note that the model uses a different linear correction
weight wi =

P (ci)

P̂ (ci)
for each label ci.

The correction value wi cannot be determined on
the test data, since P (ci) is unknown. Following
the ACC method for binary quantification (Forman,
2008) that estimates its correction parameter on the
training set, also the wi values can be approximated
on the training data using cross-validation, substitut-
ing wi with the wTr

i = PTr (ci)

P̂Tr (ci)
value. In this way the

ARC quantification estimate can be derived from the
RC estimate using the formula :

p̂ARC
j (ci) =

1

Zj
wTrRC
i p̂RC

j (ci) (2)

where Zj =
∑m

i=1 p̂
ARC
j (ci) is a normalization fac-

tor to guarantee that the prevalences for a topic sum
up to one.

94

The ARC method produced a sensible improve-
ment over RC on a leave-one-topic-out validation on
training data as reported in Table 4.

7 Future work

The features extracted from text in these experi-
ments are based on a traditional vector space model
in which each distinct feature is a represented by a
dedicated dimension in the vector space. The limited
amount of training data, and the variety of topics,
produces an effect of data sparsity, in which there
is little overlap between features from training and
test data. We plan to repeat the experiments using
semantically-richer features based on the use of lan-
guage models, which should improve the vectorial
representations by projecting onto similar vectorial
representations the features with similar semantic
properties, thus reducing the effect of data sparsity.

The participation to subtask E resulted in a bias
correction method, ARC, that performed well. ARC
sensibly improved on the baseline produced by the
direct use of the original regression method, the one
used to produce the submission for subtask C, with-
out correction. Future work will explore the use
of the bias correction method in combination with
other ordinal regression methods, either based on
classification or linear regression.

A strong assumption of the ARC method is that
the error on each label has a linear relation with re-
spect to the prevalence. This assumption can be con-
sidered to hold locally, i.e., when the variation of
prevalence for a label across topics is limited, while
it is harder to consider it valid when prevalences
varies a lot across topics. Future work will explore
the use of more complex models, e.g., fitting the dif-
ferences observed between pj(ci) and p̂j(ci) on the
training set using a polynomial model, instead of a
single wi weight.

References

Fabio Aiolli, Riccardo Cardin, Fabrizio Sebastiani, and
Alessandro Sperduti. 2009. Preferential text classifi-
cation: Learning algorithms and evaluation measures.
Information retrieval, 12(5):559–580.

Antonio Bella, Cesar Ferri, José Hernández-Orallo, and
Maria Jose Ramirez-Quintana. 2010. Quantification
via probability estimators. In Data Mining (ICDM),
2010 IEEE 10th International Conference on, pages
737–742. IEEE.

Wei Chu and S Sathiya Keerthi. 2007. Support vector
ordinal regression. Neural computation, 19(3):792–
815.

Lin Dong, Eibe Frank, and Stefan Kramer, 2005. Knowl-
edge Discovery in Databases: PKDD 2005: 9th Euro-
pean Conference on Principles and Practice of Knowl-
edge Discovery in Databases, Porto, Portugal, Octo-
ber 3-7, 2005. Proceedings, chapter Ensembles of Bal-
anced Nested Dichotomies for Multi-class Problems,
pages 84–95. Springer Berlin Heidelberg, Berlin, Hei-
delberg.

George Forman. 2008. Quantifying counts and costs via
classification. Data Mining and Knowledge Discov-
ery, 17(2):164–206.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Veselin Stoy-
anov, and Fabrizio Sebastiani. 2016. SemEval-2016
task 4: Sentiment analysis in Twitter. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, SemEval ’16, San Diego, California, June. As-
sociation for Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL, pages
115–124.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–

2830.

95

