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Abstract

This paper describes our approach to the Se-
mEval 2016 task 4, “Sentiment Analysis in
Twitter”, where we participated in subtask A.
Our system relies on AlchemyAPI and Senti-
WordNet to create 43 features based on which
we select a feature subset as final represen-
tation. Active Learning then filters out noisy
tweets from the provided training set, leaving
a smaller set of only 900 tweets which we use
for training a Multinomial Naive Bayes classi-
fier to predict the labels of the test set with an
F1 score of 0.478.

1 Introduction

Gaining an overview of opinions on recent events
or trends is an appealing feature of Twitter. For ex-
ample, receiving real-time feedback from the pub-
lic about a politician’s speech provides insights to
media for the latest polls, analysts and interested in-
dividuals including the politician herself. However,
detecting tweet sentiment still poses a challenge due
to the frequent use of informal language, acronyms,
neologisms which constantly change, and the short-
ness of tweets, which are limited to 140 characters.
SemEval’s subtask 4A (Nakov et al., 2016) deals
with the sentiment classification of single tweets into
one of the classes “positive”, “neutral” or “nega-
tive”. Concretely a training set of 5481 tweets and a
development set comprising 1799 tweets was given,
and the sentiment of 32009 tweets in a test set had
to be predicted and was evaluated using F1-score.
The distribution of labels for the given datasets is
depicted in Table 1. Tweets with positive polarity
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outnumber the other two classes and the least num-
ber of instances is available for negative tweets. Ini-
tially, the organizers provided 6000 tweets for the
training set and 2000 tweets for the development set,
but only the tweet IDs were released to abide by the
Twitter terms of agreement. By the time we down-
loaded the data, around 10% of the tweets (519 in
the training set, 201 in the test set) were not avail-
able anymore. For further details about the labeling
process and the datasets see (Nakov et al., 2016).
Lexicon-based approaches have done very well in
this competition over the past years, i.e, the winners
of the years 2013-2015 (Mohammad et al., 2013;
Miura et al., 2014; Hagen et al., 2015) relied heav-
ily on them. Our goal is to explore alternatives and
to complement lexicon-based strategies. The SteM
system performs preprocessing, including canoni-
calization of tweets, and based on that we extract
43 features as our representation, some features are
based on AlchemyAPI' and SentiWordNet (Esuli
and Sebastiani, 2006). We choose 28 of the fea-
tures as final representation and learn three classi-
fiers based on different subsets of these 28 features.
We refer to the latter as feature subspaces or sub-
spaces hereafter. However, independently of the
subspace we use, we face the fact that tweet datasets
inherently contain noise and all subspaces will - to
a greater or lesser extend- be affected by this noise.
To alleviate this problem, we propose to concentrate
on only few of the labeled tweets, those likely to be
most discriminative. To this purpose, we use Active
Learning (AL) (Settles, 2012), as explained in Sec-
tion 6. For AL, we set up a "budget”, translating
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Dataset | Total | Pos | Neu | Neg
Train 5481 | 2817 | 1882 | 782
Dev 1799 | 755 | 685 | 359

Table 1: Distribution of sentiment labels in the datasets.

to the maximum number of tweets, for which labels
are requested. The term “budget” is motivated by
the fact that labeling is a costly human activity. In
our study, this budget is set to 900. On those 900
tweet we learn a classifier for each of the three fea-
ture subspaces to predict the labels of the test set.

The remainder of this paper is organized accord-
ing to the pipeline of the SteM system. Section
2 explains preprocessing steps, Section 3 describes
our features, Section 4 describes how we select our
feature subset for the final representation, Section 5
gives details about learning the classifiers on the dif-
ferent subsets, Section 6 describes our Active Learn-
ing component, and Section 7 outlines the experi-
ments we performed to select the best model for the
competition.

2 Preprocessing

We note that while preprocessing tweets, we also ex-
tract related features. These features are described in
the next section.

Removing URLs, mentions and replacing slang,
abbreviations: we first remove Twitter handles
(Qusername) and URLs. We remove dates and
numbers with regular expressions and canonical-
ize common abbreviations, slang and negations
using a lexicon we assembled from online re-
sources.” Our list of negations encompasses: don’t,
mustn’t, shouldn’t, isn’t, aren’t, wasn’t, weren’t, not,
couldn’t, won’t, can’t, wouldn’t. We replace these
with the respective formal forms and we do the same
for their apostrophe-free forms (e.g., ‘cant’), which
are more likely to occur in hashtags. In total we use
114 abbreviations, some are shown in Table 2.

Spelling correction: the remaining unknown
words are replaced by the most likely alternative ac-
cording to the PyEnchant dictionary.?

Splitting hashtags into words: instead of remov-

http://searchcrm.techtarget.com/definit
ion/Twitter-chat-and-text-messaging-abbrev
iations

*https://pypi.python.org/pypi/pyenchant
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c’mon 18r FB
come on | later | Facebook

Table 2: Examplary slang words to be replaced by our lexicon.

Slang
Replacement

ing hashtags, we chunk them as follows. If a hash-
tag is comprised of a single word that exists in our
dictionary, we only remove the hashtag symbol. In
case of camel case hashtags (#HelloWorld), we split
the words on the respective transitions from upper
to lower case or vice versa. Otherwise we try to re-
cover the multiple words in the following manner. If
a hashtag contains less than 22 characters, we apply
an exhaustive search to find a combination of words
that all exist in a dictionary. For hashtags longer than
22 characters the exhaustive approach takes too long
(about 10s), hence we opt for a greedy algorithm in-
stead: we start at the end of the hashtag and traverse
to the front trying to find the longest words that are
found in a dictionary. In case not all parts can be re-
solved, we only keep the existing words and discard
the remainder. Furthermore we remove emoticons
and replace elongated characters by a single occur-
rence, €.g., WOOO000W —> WOW.

Determine POS tags: on the resulting canon-
icalized text, we determine part-of-speech (POS)
tags using the Stanford POS tagger (Manning et al.,
2014). Finally we eliminate any punctuation.

Discard unbiased polarity words: since some of
the words in the training corpus are uniformly dis-
tributed across the three labels, encountering such
words in any tweet does not allow us to learn any-
thing about the overall tweet sentiment. Hence, we
compile a list of these words and exclude them when
calculating tweet polarities. We detect such words
with the help of categorical proportional difference
(CPD) (Simeon and Hilderman, 2008) which de-
scribes how much a word w contributes to distin-
guishing the different classes. It is calculated as
CPD,, =|A— B|/(A+ B), where A corresponds
to the occurrences of the word w.r.t. one of the three
classes, while B denotes the number of occurrences
of the word in the remaining two classes. After com-
puting this value for all three classes separately, the
maximum value is chosen as a result. High values
close to 1 indicate a strong bias towards one of the
classes, while a value close to 0 signals that w is
almost uniformly distributed. If this value is below



a fixed threshold of 0.6 we exclude the word from
sentiment computation. Large CPD values indicate
that a word occurs frequently with a specific class,
while low values signal no particular association of
the word with any class. Note that we consider only
the absolute value of the enumerator in our equation,
similar to (O’ Keefe and Koprinska, 2009), while this
is not the case in the original paper. The reason is
that the direction of the association of a word with a
class is not important to us.

3 Extracted features

In this section we describe the extracted features and
motivate our choice. Table 3 presents an overview
of the 43 extracted features. Column ‘Used’ lists the
features that comprise our final representation after
feature subset selection which is described in Sec-
tion 4. We explain our reasoning for the different
feature subspaces (column ‘Subspace’) in Section 5.

Since emoticons correlate with sentiment, we ex-
ploit this knowledge in our features. To do so, we
create a lexicon encompassing 81 common positive
and negative emoticons based on Wikipedia. We
manually labeled these emoticons as either express-
ing positive or negative sentiment. While prepro-
cessing we extract the respective emoticon features
1 — 2. We assign features 3 — 4 into the same cat-
egory, as all four of them are easy to identify in a
tweet. Hashtags share a similar relationship with
sentiment like emoticons, i.e., they correlate with the
overall tweet sentiment (Mohammad, 2012). Thus,
we extract the features 6 — 16 describing the senti-
ment of hashtags. Exclamation marks also hint at
amplified overall tweet sentiment which is covered
by feature 17. The length of a tweet affects whether
it contains sentiment: if tweets are longer, it is more
likely they contain mixed polarity and hence it is
more difficult to label them. Features 18 — 20 deal
with this issue. We expect that sentiment bearing
tweets contain a different sentence parts composi-
tion which is reflected in the features 21 — 24.

We query AlchemyAPI about sentiment to ben-
efit from a system that is known to yield accurate
results, for example for the task of extracting entity-
level sentiment (Saif et al., 2012). Moreover, Alche-
myAPI allows to retrieve sentiment on different lev-
els of granularity for documents, e.g., for a whole
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tweet or for single entities within a tweet. Features
25 — 32 describe the relevant sentiment information
from this online resource. The remaining features
33 — 43 address sentiment on the whole tweet.
Note that we normalize the features 6—8, 27, 33—
35 by taking their absolute values and limiting them
to the interval [0...1]. For extracting tweet and
hashtag sentiment, we consider negations, dimin-
ishers (“a little”) and intensifiers (“very”) when
summing up the polarity scores of the separate
words. To account for the correlation of emoti-
cons with the overall tweet sentiment, we even-
tually multiply the respective positive or negative
overall tweet sentiment by 1.5 if emoticons are
present. The resulting value is multiplied by 1.5
the number of multiple exclamation marks if multi-
ple exclamation marks exist in a sentence. We query
SentiWordNet to determine word polarities in order
to obtain a triple of positive, neutral and negative
sentiment scores per word. This allows us to de-
fine positive/neutral/negative words according to its
prevalent sentiment. Similarly, we express the over-
all tweet sentiment with a triple representing posi-
tive, neutral and negative polarity. Values close to
0 indicate that only little sentiment is contained in a
tweet, while larger ones imply stronger sentiment.
In case of negations, we employ a simple sliding
windows approach to switch positive and negative
sentiment of the four succeeding words. If tweets
end with “not”, e.g., “I like you - not”, we also
switch their overall sentiment as this is a common
pattern in tweets indicating sarcasm. The sentiment
of capitalized and elongated words is amplified. We
consider a word elongated if the same letter occurs
more than twice consecutively. In case of intensi-
fiers and diminishers, the sentiment of the four suc-
ceeding words is increased in the former case by
multiplying it by 1.5, and decreased in the latter one
by multiplying the term by 0.5. However, if “a bit”
is encountered, also the sentiment of the four pre-
ceding words is updated, e.g., “I like you a bit”.

4 Selecting a feature subset

We first use Weka (Hall et al., 2009) to find an ini-
tially promising subset of features. For this purpose,
we employ the WrapperSubsetEval method. That
means, Multinomial Naive Bayes (MNB) is used



ID | Name Description Subspace | Used
1 Pos_emo Number of positive emoticons emoticons | yes
2 | Neg_emo Number of negative emoticons emoticons | yes
3 Elongated Number of elongated words emoticons | no
4 | Upper Number of CAPITALIZED words emoticons | no
5 has_ht Does the tweet contain at least one hashtag? hashtag yes
6 | neg_ht Negative sentiment of hashtag hashtag no
7 | neu_ht Neutral sentiment of hashtag hashtag no
8 | pos_ht Positive sentiment of hashtag hashtag yes
9 | neg_words_ht Number of negative words in hashtag hashtag yes
10 | neu_words_ht Number of neutral words in hashtag hashtag yes
11 | pos_words_ht Number of positive words in hashtag hashtag yes
12 | pol_words_ht Number of polarity words in hashtag hashtag yes
13 | negat_words_ht Number of negation words in hashtag hashtag yes
14 | neu_words_ht_sum | Sum of negative sentiment in hashtag hashtag no
15 | pos_words_ht_sum | Sum of neutral sentiment in hashtag hashtag yes
16 | pol_words_ht_sum | Sum of positive sentiment in hashtag hashtag yes
17 | punct Number of occurrences of ’!”, >?77°,°1?°, 21 default yes
18 | start_len Number of words before preprocessing default yes
19 | end_len Number of words after preprocessing default no
20 | avg_len Average number of words per sentence default no
21 | adj_frac Percentage of adjectives default yes
22 | adv_frac Percentage of adverbs default yes
23 | v_frac Percentage of verbs default no
24 | nn_frac Percentage of nouns default no
25 | al_t_pol Tweet polarity (AlchemyAPI) default no
26 | al_t_type Tweet polarity type (AlchemyAPI) default yes
27 | al_e_pol Average entity polarity (AlchemyAPI) default no
28 | al_e_type Median entity polarity type (AlchemyAPI) default yes
29 | al_neg.e Number of negative named entities (AlchemyAPI) default yes
30 | al.neu_e Number of neutral named entities (AlchemyAPI) default yes
31 | al_pos_e Number of positive named entities (AlchemyAPI) default yes
32 | al_mixed Does the tweet contain mixed sentiment? (AlchemyAPI) | default yes
33 | neg Negative sentiment (SentiWordNet) default yes
34 | neu Neutral sentiment (SentiWordNet) default yes
35 | pos Positive sentiment (SentiWordNet) default yes
36 | neg_words Number of negative words (SentiWordNet) default yes
37 | neu_words Number of neutral words (SentiWordNet) default no
38 | pos_words Number of positive words (SentiWordNet) default yes
39 | negat_words Number of negation words (SentiWordNet) default no
40 | pol_words Number of polarity words (SentiWordNet) default yes
41 | neg_words_sum Sum of negative sentiment (SentiWordNet) default no
42 | neu_words_sum Sum of neutral sentiment (SentiWordNet) default no
43 | pos_words_sum Sum of positive sentiment (SentiWordNet) default yes

Table 3: Overview of our extracted features.
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to compute F1-scores and with the help of 10-fold
cross-validation on the training set the merit of dif-
ferent feature subsets is determined. This leaves us
with a feature subset comprising 10 features. But
we must consider the fact that we are using differ-
ent feature subspaces as opposed to a single one for
which Weka selected the features. Hence, our ap-
proach might benefit from other features not selected
by Weka as well as some currently selected features
could affect the performance of our system nega-
tively. To investigate this, we work with SteM and
perform 10-fold cross-validation on the training set
to monitor effects on the Fl-scores. We first try to
reduce the feature subset determined by Weka fur-
ther by removing features separately. This yields
a feature subset encompassing 7 features. Now we
add all features that Weka discarded separately back
into SteM and observe the effects on the F1-scores.
Following this procedure, we added 21 more fea-
tures to our subset leading to the final tweet repre-
sentation with 28 features. The list of used features
is found in Column *Used’ in Table 3.

5 Learning a model

We employ Scikit-learn (Pedregosa et al., 2011) for
building our classifiers. Since some of our fea-
tures occur only in a small portion of the dataset,
we build classifiers on different feature subspaces
which we manually defined (column ‘Subspace’ in
Table 3). Otherwise these underrepresented features
would not be selected as informative features when
removing noisy features during feature subset se-
lection, although they actually help discriminate the
different classes. For example, only 10-15% of the
tweets in the training, development and test set con-
tain hashtags. Likewise few tweets include emoti-
cons. Hence, we consider emoticons and hashtags
as separate feature subspaces. We learn in total three
classifiers for three different subspaces: default, de-
fault + emoticons, default + hashtags. We choose
MNB as our classifier as it is competitive with Lo-
gistic Regression and linear SVM and fast in learn-
ing models which allows us to carry out multiple ex-
periments for quantifying the merit of different AL
strategies, feature subsets, etc., as these experiments
are time-consuming. With a similar reasoning we
decide against ensemble methods for now as we first
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want to obtain reliable results for single classifiers
before studying ensembles.

6 Active learning

AL is motivated well in (Settles, 2010): “The key
idea behind active learning is that a machine learn-
ing algorithm can achieve greater accuracy with
fewer training labels if it is allowed to choose the
data from which it learns.”” In (Martineau et al.,
2014), the authors apply AL to detect misclassified
samples and let experts relabel those instances to re-
duce noise. We utilize AL in a similar fashion, but
instead of relabeling tweets, we discard them. We
set a fixed budget for the AL strategy, which indi-
cates for how many tweets the classifer can use the
label for training, after starting from a small seed set
of labeled tweets.

As AL strategies we pick uncertainty sampling
(UC) and certainty sampling (C) and choose MNB
as classifier. We calculate certainty/uncertainty ac-
cording to two different criteria, namely margin and
confidence (Li et al., 2012). In margin-based UC
the tweet with the highest margin is selected for la-
beling, while in confidence-based UC the instance
with the least confidence is chosen. Contrary to UC,
C always selects the tweet about which the clas-
sifier is most confident in case of confidence, or
the tweet with the lowest margin respectively. We
initialize the seed set with approximately the same
number of tweets from all three classes where the
tweets are chosen randomly per class. Whenever
an AL strategy selects a tweet to be labeled, we
reveal its actual label. To identify a fixed budget
for our AL strategies, we test different configura-
tions of budgets and seed set sizes on the training
set. For each run we perform 10-fold cross vali-
dation and average results over three executions to
account for chance and then the labels of the de-
velopment set are predicted. As a baseline method
we choose random sampling which selects arbitrary
tweets to be labeled. After conducting multiple ex-
periments, we find that initializing the seed set with
500 tweets, setting the budget to 400 tweets and
choosing confidence-based UC yields the highest
weighted Fl-scores with F'1=0.48. Our experi-
mental evaluation of different AL methods is visu-
alized in Figure 1 using a seed set with 500 tweets
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Figure 1: F1-scores on development set for different AL strate-
gies with a seed set size of 500 tweets and a budget of 400

tweets.

and a budget of 400 tweets for which the strategies
request the revealed labels. Although margin-based
C seems to outperform confidence-based UC, we se-
lect the latter strategy. Tests on the development set
using only the tweets selected by the respective AL
strategies revealed that C achieved an Fl-score of
0.30 while confidence-based UC achieved around
0.48. This inferiority of C on our data confirms
reports from the literature, see e.g., (Kumar et al.,
2010; Ambati et al., 2011).

7 Experiments

In this section we evaluate our approach on the de-
velopment set as no labels for the test set are avail-
able. As AlchemyAPI is a full-fledged system, we
use the 8 features extracted from it (Features 25 — 32
in Table 3) as a baseline in our experiments to com-
pare it with SteM using a) the full training set and
b) the reduced tweets after performing confidence-
based UC as explained in the previous section. We
then reapply the learning procedure described in
Section 5 to obtain our Fl-scores. The results are
depicted in Table 4. Initially, our system achieves an
Fl1-score of 0.454 using all training instances. Af-
ter selecting the 900 most informative tweets using
confidence-based UC from the previous section, the
score increases to 0.473. We observe a similar trend
for our baseline and note that it is outperformed by
SteM, although the margin shrinks when reducing
the number of tweets in the training set. When ana-
lyzing the corresponding confusion matrix of SteM
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Strategy | #Features | #I'weets | Dev

BL 8 5481 0.444
BL 8 900 0.466
SteM 43 5481 0.454
SteM 28 900 0.473

Table 4: Comparing F1-scores on development set using SteM

and our baseline.

Predicted

neg neu pos
= neg 181 93 85
E neu 206 181 298
& pos 116 124 515

Table 5: Confusion matrix of SteM with 900 training instances.

with 900 tweets in Table 5, it becomes obvious that
it fails to distinguish neutral sentiment from the re-
maining ones properly.

8 Conclusion and future work

In this paper we proposed SteM to predict tweet sen-
timent. After preprocessing, it extracts 43 features
from tweets, selects 28 of these features as an ap-
propriate subset to represent tweets for Multinomial
Naive Bayes. One such classifier is trained for each
of our three overlapping feature subspaces. To pre-
dict the labels of unknown instances, they are passed
to the classifier that was trained on the respective
feature subspace. Due to the noisy nature of labels in
sentiment analysis, we select only few tweets for our
training set by applying Active Learning. Despite
utilizing only 26.3% (900 out of 5481) of the pro-
vided tweets for training, SteM outperforms an iden-
tical system trained on the full training set. Overall,
our approach looks promising, but has room for im-
provement. Firstly, we plan to test our approach with
ensembles and secondly, identify tweets with neutral
sentiment more accurately. To this purpose, we plan
to incorporate more features.
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