
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 965–969,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

Turku: Semantic Dependency Parsing as a Sequence Classification

Jenna Kanerva1,2, Juhani Luotolahti1, Filip Ginter1

1 Department of Information Technology, University of Turku, Finland
2 University of Turku Graduate School (UTUGS), Turku, Finland

jmnybl,mjluot,figint@utu.fi

Abstract

This paper presents the University of Turku
entry to the SemEval-2015 task on Broad-
Coverage Semantic Dependency Parsing. The
system uses an existing transition-based parser
as a sequence classifier to jointly predict all ar-
guments of one candidate predicate at a time.
Compared to our 2014 entry, the 2015 system
gains about 3pp in terms of F-score for a frac-
tion of the development time. Depending on
the subtask, the difference between our entry
and the winning system ranges between 1 and
5pp.

1 Introduction

The SemEval-2015 task on Broad-Coverage Seman-
tic Dependency Parsing is a continuation to the se-
mantic parsing shared task organized for the first
time in 2014. The objective of the shared task is
to produce a rich semantic analysis for a given sen-
tence in three distinct annotation formats. In contrast
to the 2014 task, this year predicate disambiguation
and two additional languages are included: Czech
data from the Prague Czech–English Dependency
Treebank (Hajič et al., 2012) and Chinese data from
the Penn Chinese Treebank (Xue et al., 2005). For
English and Czech also out-of-domain test data is
provided in order to test the generalization ability of
the systems.

The semantic parsing task includes three differ-
ent tracks. In the closed track the systems must be
trained using only the official training data, whereas
in the open track all additional sources of infor-
mation are allowed. Together with the training

data the organizers provided also syntactic depen-
dency parses produced in the Stanford Dependen-
cies scheme (De Marneffe and Manning, 2008) with
the dependency parser of Bohnet and Nivre (2012).
In addition to the closed and open tracks, also a gold
track is included, where gold standard dependency
parses are given for both training and test data.

This paper describes our system used to take part
in the open and gold tracks of the shared task. The
system is a sequence classifier built on top of an
existing dependency parser. The main idea behind
the implementation is to turn the task of predicting
all arguments for a single predicate to a sequence
classification problem, but still process each pred-
icate independently. Predicting one predicate at a
time feels very natural when working with data an-
notated in PropBank style (Palmer et al., 2005), and
since our main objective is to develop an SRL sys-
tem optimized for Finnish PropBank (Haverinen et
al., 2013), we did not want to merely follow the
main methods from last year. Our system also re-
quires syntactic analyses of the data, which is why
we participated only on the tasks which allow their
use (open and gold tracks). The system will be de-
scribed in detail in Section 3.

2 Related Work

The main approaches in the 2014 semantic depen-
dency parsing task (Oepen et al., 2014) relied on the
methods developed in the context of syntactic pars-
ing, and existing state-of-the-art dependency parsers
were widely used. Systems using dependency
parsers are mainly based on graph-to-tree transfor-
mations (Koller, 2014; Schluter et al., 2014), parsers

965



able to produce directed acyclic graphs (Ribeyre et
al., 2014; Kuhlmann, 2014), or a combination of
these two (Du et al., 2014). The winner system of
the 2014 open track is based on the graph-based de-
pendency parser able to produce full non-projective
graphs (Martins and Almeida, 2014).

The system we used to participate in the same
task last year was a pipeline of three different sup-
port vector machine classifiers trained separately
for dependency detection, role assignment and top
node prediction, where each governor–dependent
pair was classified individually without any global
view of the semantic structures (Kanerva et al.,
2014a). A similar approach with the exception of
using a structured support vector machine and there-
fore gaining a bit more of a global view to the prob-
lem was introduced by Jeffrey et al. (2014).

3 System Architecture

The main approach is based on the recent progress
on syntactic dependency parsing, yet taking a
completely different approach than the mainstream
graph-to-tree transformation methods and DAG
parsers discussed in Section 2. Our main focus is
to process each predicate independently (i.e. other
predicates and their arguments do not affect the de-
cision), but when assigning arguments for one pred-
icate, keep a global view of arguments already pre-
dicted for this particular predicate.

The system is built on top of the open-source
Turku transition-based dependency parser1 to obtain
the full functionality of such a parser and to be able
to freely modify it to fit to the needs of our approach.
The Turku Dependency Parser is an implementa-
tion of the parser of Bohnet and Kuhn (2012), with
full functionality of that parser, including e.g. online
learning implemented with the generalized percep-
tron (Collins, 2002), beam search and graph-based
completion features, and the full feature representa-
tion taken from the Bohnet and Nivre (2012).

3.1 Data Processing

Before training the parser, the data is processed to
meet the requirements of the standard, off-the-shelf
dependency parsers. As the arguments are predicted

1https://github.com/jmnybl/
Turku-Dependency-Parser

separately for each predicate, semantic graphs can
be subtracted into several smaller units where each
subgraph preserves the semantic arguments of one
particular predicate. This means that each sentence
is turned into as many pseudotrees as there are to-
kens in the sentence, where each token in turns acts
as a candidate predicate and preserves only its own
arguments and all other relations are dropped from
this particular pseudotree. These pseudotrees are fi-
nalized by attaching all other tokens to the candi-
date predicate with an empty relation type NOTARG,
which at the same time causes the candidate predi-
cate to be the root token of the tree. Since the data
does not include self-loops or multiple arguments
between the same governor and dependent pair, this
transformation can be made without losing any in-
formation. These pseudotrees created from one sen-
tence can again be merged into a one semantic graph
by just preserving the real semantic relations and
leaving out the empty NOTARG relations.

As will be explained later, syntactic parses are a
major source of features. For English, the syntac-
tic parses are obtained from the companion and gold
data provided by the organizers. Since for Czech and
Chinese no companion data was available, the Czech
syntactic representation is obtained using the Malt-
Parser (Nivre et al., 2007) trained on the training sec-
tion of the Prague Dependency Treebank (Hajič et
al., 2000) and the Chinese analysis is acquired using
DuDuPlus, a graph-based dependency parser (Chen
et al., 2009) with a model trained on the training sec-
tion of the Chinese Treebank (Xue et al., 2005).

3.2 Transition System

Since the structure of the input trees is completely
flat (i.e. all words are attached to the sentence root,
which is the predicate under inspection) the transi-
tion system of the parser can be simplified substan-
tially. For every token other than the root, only the
relation type must be predicted (using the NOTARG
relation for tokens which are not arguments of this
particular predicate). Thus, the transition system is
modified to keep the root token always in the pars-
ing stack, and one by one taking the next token from
the queue, predicting its relation type and reducing
it from the stack in a single operation.

Since the simplified transition system requires
that the root token is in the stack already when the

966



parsing starts, the order of the tokens in the pars-
ing queue must be manipulated. Manipulating the
parsing queue also changes the order in which the
predictions are made and since the parser is beam
searched and the system has an ability to recover
from a wrong prediction made earlier on, the dif-
ferent order of predictions may affect the final se-
quence of predictions. Two different approaches are
tested. First and by far the simplest method is to
use the normal linear order of the tokens and just
remove the sentence root from the queue (run 1 in
the official results). Second method is to reorder
the tokens based on the syntactic distance, where
the tokens closest to sentence root in the syntactic
tree are first in the queue (and thus their relations
are also predicted first) (run 2 in the official results).
The idea behind this is to assume that tokens which
are most likely to be arguments of the predicate are
close to it in the syntactic representation and there-
fore predicted first. Official results showed that the
first method performed better and therefore all num-
bers reported in this paper are based on the first run.

3.3 Feature Generation

The basic features used are based on the standard
features of dependency parsers. However, few mod-
ifications to the parser feature representation were
made. The function of the graph-based completion
features is to model the partial structures of the tree
already built at any given point. Since in the simpli-
fied transition system all tokens are forced to be de-
pendents of the sentence root, taking into account all
created relations would not distinguish semantically
meaningful tokens from all other tokens (as is in the
case of syntactic parsing where only real syntactic
dependents are attached to any given token). Thus,
tokens attached with the empty relation NOTARG
are discarded and the graph-based completion fea-
tures are created only from the real semantic rela-
tions.

Additional features are created from the syntactic
structure of the sentence. The most important fea-
ture extracted from the syntactic tree is the path be-
tween the predicate and the potential argument. Two
variations of the syntactic path are used; the depen-
dency types and the part-of-speech tags between the
two tokens. If the distance of the tokens is smaller
than seven dependencies, full paths are used as fea-

P R F UF
Open in-domain
DM 87.80 84.60 86.17 88.07
PAS 91.38 89.87 90.62 91.91
PSD 76.10 71.32 73.63 86.44
Overall 85.09 81.93 83.47 88.81
Open out-of-domain
DM 81.54 76.63 79.01 81.68
PAS 86.95 84.98 85.95 87.83
PSD 74.92 68.55 71.59 86.54
Overall 81.14 76.72 78.85 85.35

Table 1: English open track (in-domain & out-of-domain)
results in terms of precision (P), recall (R), labeled F-
score (F) and unlabeled F-score (UF).

tures, otherwise only the beginning and the end of
the path are used. Finally, from each aforementioned
path all dependency type and part-of-speech tag tri-
grams are created.

3.4 Top Node and Sense Prediction
Prediction of top nodes and predicate senses are im-
plemented as separate steps and carried out after the
argument prediction. The top nodes are predicted
in the same manner as in our 2014 system (Kanerva
et al., 2014a), where a support vector classifier is
trained to classify individual tokens.

Predicate senses are predicted with the approach
introduced by Kanerva and Ginter (2014), where
vector space representations of tokens are used to
calculate an average vector to represent each indi-
vidual sense. Then for each predicate the sense is
assigned by calculating a vector to represent this par-
ticular predicate and taking the sense which maxi-
mizes the cosine similarity of the predicate vector
and the sense vector.

4 Results

The final system performance is shown in Table 1.
The overall labeled F-score in the English in-domain
data is 83.47%. When compared to our overall score
in the 2014 shared task (overall labeled F-score
80.49%) a clear improvement of 3pp can be seen.
This reflects the fact that predicting all arguments
for a single predicate as a sequence is better than pre-
dicting them independently. The same behavior can
be seen also from the methods using pure syntac-
tic dependency parsing techniques, which have been
shown to achieve the current state-of-the-art perfor-

967



P R F UF
Czech Open
ID 77.53 73.20 75.30 83.03
OOD 65.11 62.35 63.70 83.10
Chinese Open
ID 80.81 78.51 79.64 81.36

Table 2: Results for Czech and Chinese data in the open
track. The Czech data is in PSD format and includes
both in-domain (ID) and out-of-domain (OOD) test sets,
whereas the Chinese data is in PAS format and has only
in-domain test set.

DM PAS PSD Overall
Gold in-domain
SD 88.29 95.58 76.57 86.81
DB 93.88 92.63 75.00 87.17
Overall-max 88.68
Gold out-of-domain
SD 82.11 92.92 75.47 83.50
DB 88.60 88.93 73.43 83.65
Overall-max 85.66

Table 3: English gold track (in-domain & out-of-domain)
results in terms of labeled F-score when using Stanford
Dependencies (SD) and DeepBank (DB) style syntactic
annotations.

mance. From out-of-domain scores we see that our
system performs clearly better on in-domain data,
the overall labeled F-score being 4.6pp lower when
tested with out-of-domain data. Czech and Chinese
open track scores are shown in Table 2.

We also provide evaluation on gold syntactic trees
(gold track) using both Stanford Dependencies and
DeepBank syntactic representations.2 As can be
seen from the gold track results (see Table 3) our
system clearly benefits from gold-standard syntactic
analyses. When comparing the performances of two
syntactic representations on different formats, we
can see that the optimal syntactic representation for
DM format is DeepBank, whereas Stanford Depen-
dencies fare better on PAS and PSD formats. When
the best-performing syntactic representation is cho-
sen for each format, the overall benefit on in-domain
data is 5.2pp and 6.8pp on out-of-domain data com-
pared to the open track results. Out-of-domain re-
sults improving more than in-domain results points
out that better syntactic analyses help the system
make more universal decisions.

2Unfortunately, Enju parses are not included since we could
not overcome some of the problems they had in time.

The system is better at predicting relations be-
tween tokens close to each other. For example in
the case of DM in-domain, relations between tokens
next to each other are predicted at F-score of 92.04%
while relations longer than 10 tokens at a rate of
65.11%. However, the gold syntactic analyses help
predicting long relations. If we look only the rela-
tions which are ten or more tokens apart, the max-
imum improvement brought by gold standard syn-
tax is 19pp for out-of-domain PAS and the minimum
improvement is 6pp for in-domain DM.

5 Conclusions

Our entry in the shared task was based on an ex-
isting dependency parser, whose transition system
we modified so as to essentially use the parser as
a sequence classifier based on online learning and
beam search. Compared to our last year’s entry, the
arguments of a single predicate are thus no longer
predicted independently. This is accompanied by
a notable gain in accuracy over the previous sys-
tem which used similar features but predicted all
arguments independently. From a technical point
of view, basing the work on an existing parser was
rather straightforward and the entire development
was carried out over a period of less than two weeks.

Even though clearly better than our last year’s sys-
tem, the overall performance still leaves room for
improvement. One possible direction would be to
carry out a proper feature selection and improve the
underlying machine learning algorithm of the parser
to, for example, incorporate regularization. As the
parser generates a large number of features opti-
mized for syntactic parsing, it is likely that many of
these are irrelevant and potentially harmful for the
online-trained linear classifier.

Finally, we will evaluate the system on the Finnish
PropBank data, and intend to apply it at scale to
carry out SRL of the 3.2 billion token Finnish In-
ternet Parsebank (Kanerva et al., 2014b).

Acknowledgments

This work was supported by the Emil Aaltonen
Foundation and the Kone Foundation. Computa-
tional resources were provided by CSC – IT Center
for Science. We would like to thank Dan Zeman for
providing us the MaltParser model for Czech.

968



References
Bernd Bohnet and Jonas Kuhn. 2012. The best of

both worlds: a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 77–87.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455–1465.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto,
and Kentaro Torisawa. 2009. Improving dependency
parsing with subtrees from auto-parsed data. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 2 - Vol-
ume 2, EMNLP ’09, pages 570–579, Stroudsburg, PA,
USA.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP’02, pages 1–8.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun Wan.
2014. Peking: Profiling syntactic tree parsing tech-
niques for semantic graph parsing. SemEval 2014,
page 459.

Jan Hajič, Alena Böhmová, Eva Hajičová, and Barbora
Vidová-Hladká. 2000. The Prague Dependency Tree-
bank: A three-level annotation scenario. In Treebanks:
Building and Using Parsed Corpora, pages 103–127.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Silvie Cinková, Eva Fučı́ková, Marie Mikulová, Petr
Pajas, Jan Popelka, Jiřı́ Semeckỳ, et al. 2012. Prague
Czech-English Dependency Treebank 2.0.

Katri Haverinen, Veronika Laippala, Samuel Kohonen,
Anna Missilä, Jenna Nyblom, Stina Ojala, Timo Vilja-
nen, Tapio Salakoski, and Filip Ginter. 2013. Towards
a dependency-based PropBank of general Finnish. In
Proceedings of the 19th Nordic Conference on Com-
putational Linguistics (NoDaLiDa’13), pages 41–57.

Sam Thomson Brendan OConnor Jeffrey, Flanigan David
Bamman, Jesse Dodge Swabha Swayamdipta Nathan
Schneider, and Chris Dyer Noah A Smith. 2014.
CMU: Arc-factored, discriminative semantic depen-
dency parsing. SemEval 2014, page 176.

Jenna Kanerva and Filip Ginter. 2014. Post-hoc manip-
ulations of vector space models with application to se-
mantic role labeling. In Proceedings of the 2nd Work-
shop on Continuous Vector Space Models and their
Compositionality (CVSC) at EACL’14, pages 1–10.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter.
2014a. Turku: Broad-coverage semantic parsing with

rich features. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014),
pages 678–682.

Jenna Kanerva, Matti Luotolahti, Veronika Laippala, and
Filip Ginter. 2014b. Syntactic n-gram collection from
a large-scale corpus of Internet Finnish. In Proceed-
ings of the Sixth International Conference Baltic HLT
2014, pages 184–191.

Alexander Koller. 2014. Potsdam: Semantic depen-
dency parsing by bidirectional graph-tree transforma-
tions and syntactic parsing. SemEval 2014, page 465.

Marco Kuhlmann. 2014. Linköping: Cubic-time graph
parsing with a simple scoring scheme. SemEval 2014,
page 395.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1–8.

André FT Martins and Mariana SC Almeida. 2014. Prib-
eram: A turbo semantic parser with second order fea-
tures. SemEval 2014, page 471.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(02):95–135.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on Se-
mantic Evaluation (SemEval 2014), pages 63–72.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–
106.

Corentin Ribeyre, Eric Villemonte de la Clergerie, and
Djamé Seddah. 2014. Alpage: Transition-based se-
mantic graph parsing with syntactic. SemEval 2014,
page 97.

Natalie Schluter, Jakob Elming, Sigrid Klerke,
Héctor Martınez Alonso, Dirk Hovy, Barbara
Plank, Anders Johannsen, and Anders Søgaard.
2014. Copenhagen-Malmö: Tree approximations of
semantic parsing problems. SemEval 2014, page 213.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer.
2005. The Penn Chinese TreeBank: Phrase structure
annotation of a large corpus. Natural language engi-
neering, 11(02):207–238.

969


