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Abstract

This paper describes our automatic sentiment
analysis system — CIS-positive — for SemEval
2015 Task 10 “Sentiment Analysis in Twit-
ter”, subtask B “Message Polarity Classifica-
tion”. In this system, we propose to normalize
the Twitter data in a way that maximizes the
coverage of sentiment lexicons and minimizes
distracting elements. Furthermore, we inte-
grate the output of Convolutional Neural Net-
works into Support Vector Machines for the
polarity classification. Our system achieves a
macro Fj score of the positive and negative
class of 59.57 on the SemEval 2015 test data.

1 Introduction

On the Internet, text containing different forms of
sentiment appears everywhere. Mining this informa-
tion supports many types of interest groups. Com-
panies, for instance, are interested in user feedback
about the advantages and drawbacks of their prod-
ucts. Users want to read short reviews or ratings
of hotels they want to book for their next vaca-
tion. Politicians try to predict the outcome of the
next presidential election. An automatic sentiment
analysis system can support all these different re-
quirements. One source of these types of informa-
tion covering many domains and topics is the social
networking service Twitter. Its popularity and the
users’ productivity in creating new text makes it an
interesting research topic. However, Twitter intro-
duces specific challenges as we will see next.

In general, automatic sentiment analysis is chal-
lenging due to many different factors, such as am-
biguous word senses, context dependency, sarcasm,
etc. Specific properties of Twitter text make this task
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even more challenging. The limit of 140 character
per message leads to countless acronyms and ab-
breviations. Moreover, the vast majority of tweets
is of informal character and contains intentional
miss-spellings and wrong use of grammar. Hence,
the out-of-vocabulary (OOV) rate of Twitter text is
rather high, which leads to information loss.

One of the SemEval 2015 shared tasks — Task
10: Sentiment Analysis in Twitter — addresses these
challenges (Rosenthal et al., 2015). We participated
in Subtask B the “Message Polarity Classification”
task. The goal is to predict the polarity of a given
tweet into positive, negative, or neutral. The task
organizers provided tweet IDs and corresponding la-
bels to have a common ground for training polarity
classification systems. More information about the
task, its other subtasks as well as information about
how the data was selected can be found in (Rosen-
thal et al., 2015).

In this paper, we present our sentiment analysis
system for SemEval 2015 - Task 10. Our system
addresses the above mentioned challenges in two
ways. First, we normalize the text to maximize the
coverage of sentiment lexicons and minimize dis-
tracting elements such as user names or URLs. Sec-
ond, we combine deep Convolutional Neural Net-
works (CNN) and support vector machines (SVM)
for a better overall classification. The motivation of
using CNNs is to extract not only local features but
also context to predict sentiment. Integrating CNN
output into an SVM improves classification.

2 Data Preprocessing

Twitter texts are challenging and differ from other
domains in some specific properties. Due to the 140
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characters limit of tweet length, users make heavy
use of abbreviations and acronyms. This leads to
a high OOV rate and makes tasks like tokenizing,
part-of-speech (POS) tagging, and lexicon search
more difficult. Furthermore, special tokens such as
user mentions (e.g., “@isar”), urls, hashtags (e.g.,
“#happy”), and punctuation sequences like “!?!7”
are often utilized. Therefore, normalization of all
tweets is necessary to facilitate later polarity clas-
sification. Our text preprocessing pipeline can be
described as follows: Tweets are first tokenized
and POS tagged with the CMU tokenizer and tag-
ger (Owoputi et al., 2013). This tagger is specialized
for Twitter and therefore superior to other general
domain taggers. Afterwards, all user mentions are
replaced by “<user>" and all urls by “<web>", be-
cause they do not provide any cues of polarity. We
do not replace hashtags, because they often contain
valuable information such as topics or even senti-
ment.

Punctuation sequences like “!?!?7” can act as ex-
aggeration or other polarity modifier. However, the
sheer amount of possible sequences increases the
OOV rate dramatically. Therefore, all sequences of
punctuations are replaced by a list of distinct punc-
tuations in this sequence (e.g., “!?!?” is replaced by
“[1?77”). That reduces the OOV rate and still keeps
most of the information.

Mohammad et al. (2013) showed that sentiment
lexicons are crucial for achieving good polarity clas-
sification. Unfortunately, miss-spellings and elon-
gated surface forms of sentiment-bearing tokens,
such as “cooooolllll”, lead to lower coverage of all
sentiment lexicons. Since elongated words often
convey sentiment (Brody and Diakopoulos, 2011),
we carefully normalize them in the following way.
First, all elongated words are identified by search-
ing for tokens that contain a sequence of at least
three equal characters. Afterwards, for each elon-
gated word a candidate set is created by removing
the repeated character one by one until only one oc-
currence is left. If a word contains several repeated
character sequences, all combinations are taken as
candidates. For instance, the candidate set of the
word “cooolll” will be {coolll, colll, cooll, coll, cool,
col}. We then search every candidate in a senti-
ment lexicon to find the correct canonical form of
the elongated word. If there is more than one match,
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Figure 1: System architecture

the shortest match is taken. Since several sentiment
lexicons with different qualities exist, we apply a se-
quential approach. We search the canonical form of
the elongated word in one lexicon. If it does not
exist, the next lexicon in the sequence is searched.
The sequence of sentiment lexicons is sorted based
on the reliability of the lexicon. Manually created
lexicons precede automatically created lexicons. In
this paper, the ordering is as follows: MPQA sub-
jectivity cues lexicon (Wilson et al., 2005), Opin-
ion lexicon (Hu and Liu, 2004), NRCC Emotion
lexicon (Mohammad and Turney, 2013), sentiment
140, and Hashtag lexicon (both in (Mohammad et
al., 2013)). As a result, a mapping from elongated
words to their canonical form is found and used to
normalize the corpus. Lowercasing finalizes the pre-
processing step.

3 Model

The system architecture consists of three main com-
ponents and is depicted in Figure 1. The first compo-
nent is a CNN (left part in the figure), which makes
use of the sequence of all words in a tweet. The
second component is an SVM classifier which uses
several linguistic features and the CNN’s output as
input (top right part in Figure 1). Finally, to combine
the polarity prediction of the CNN and the SVM we
use another SVM on top to receive the final polarity
label (bottom right part in Figure 1). In this section
all components are described in detail.



3.1 CNN

The intuition of using a CNN for sentence modeling
is to have a model that is able to capture sequential
phenomenon and considers words in their contexts.
In a bag-of-words approach the word not, indicat-
ing negation, is not set into relation to the words it
negates. An n-gram approach might tackle this prob-
lem to some extent, but long distance effects are still
not captured. Furthermore, a bag-of-words model
suffers from sparsity. A CNN is a neural network
that can handle sequences by performing a math-
ematical convolution operation with a filter matrix
and the input. The goal is to conflate the input se-
quence into a meaningful representation by finding
salient features that indicate polarity. More formally,
the words in the model are represented by two ma-
trices. First, P € R%»*V denotes a matrix of low di-
mensional word representations, so called word em-
beddings. d,, the size of the embeddings, is usu-
ally set to 50-300, depending on the task. V' de-
notes the size of the vocabulary. The matrix P is
learned during model training. It is initialized ei-
ther randomly or with a pretrained matrix, as we
will describe later. In addition to P, we introduce
another matrix Q € R%*V which contains exter-
nal word features. In this case, d, is the number of
features per word. This approach allows us to add
as much external knowledge into the training pro-
cess as needed. The features are precomputed and
not embedded into any embeddings space, i.e. () is
fixed during training. A description of all features is
given later in this section.

Both components are concatenated into a lookup

P
table LT =
K

to the entire representation of a certain word in the
vocabulary. Given a sentence of n words w; to wy,,
the model concatenates all n word representation to
the input of the CNN

] , where each column corresponds

A one dimensional convolution is a mathematical
operation that slides a filter m € R'*"™ over a vector
and computes a dot product at every position. The
length of the filter m specifies how many elements
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the filter spans. Applying this concept to a two di-
mensional input leads to a convolution matrix where
the elements are computed by

T
Cij=m" S itm—1,

where 17 is the ith row in S and j is the start index of
the convolution.

A, the output of the convolution layer is computed
by an element-wise addition of a bias term (one bias
per row) and an element-wise non-linearity: A =
f(C 4+ b). As non-linear function we use a rectified
linear unit: f(z) = maxz(0,x). This non-linearity
proved to be a crucial part in object recognition (Jar-
rett et al., 2009), machine translation (Vaswani et al.,
2013), and speech recognition (Zeiler et al., 2013).

Our model uses two layers of convolution. The
concatenation of all rows of the second convolution
layer output is the input to a sequence of three fully
connected hidden layers. A hidden layer transforms
the input vector x into z = f(Wx + b), where W
is a weight matrix that is learned during training and
b is a bias. In order to convert the final hidden layer
output z into a probability distribution over polarity

labels o € R3, the softmax function is used: o, =
exp(z;)

ZJ. exp(z;)°

Pretraining of Word Embeddings The standard
way of initializing the word embeddings matrix P
is by sampling from a uniform distribution. Since
there is only a small amount of training data avail-
able, word representations cannot be learned from
scratch before the model would overfit. Therefore,
instead of initializing the word embeddings matrix
randomly, we precompute word embeddings with
the word2vec toolkit on a large amount of Twit-
ter text data.! We first downloaded about 60 mil-
lion tweets from the unlabeled Twitter Events data
set (McMinn et al., 2013). This corpus is normalized
as described in Section 2. We then select V' words,
comprising all the words of the SemEval training
data, words from the sentiment lexicons, and the
most frequent words of the Twitter Events data set.
Finally a continuous bag-of-words model (Mikolov
et al., 2013) with 50 dimensional vectors is trained
and used to initialize P.

'https://code.google.com/p/word2vec/



Word Features In addition to the word embed-
dings the CNN receives additional external features
(matrix @)). These features are the following:

binary sentiment indicators binary features that
indicate the polarity of a token in a senti-
ment lexicon. The lexicons for this feature are
MPQA (Wilson et al., 2005), Opinion lexicon
(Hu and Liu, 2004) and NRCC Emotion lexi-
con (Mohammad and Turney, 2013).

sentiment scores the sentiment 140 lexicon and the
Hashtag lexicon (Mohammad et al., 2013) both
provide a score for each token instead of just a
label. We directly use these scores. Both lex-
icons also contain scores for bigrams and skip
ngrams. In such a case each word of an ngram
receives the score of the entire ngram.

binary negation following the procedure of
Christopher Potts’ Sentiment Symposium tuto-
rial> we mark each token between a negation
word and the next punctuation as negated.

3.2 SVM1

Since training the CNN for many epochs (entire runs
over the whole dataset) always led to overfitting, we
decided to use a second classifier, an SVM. Follow-
ing Mohammad et al. (2013) we use the following
features:

binary bag-of-words binary bag-of-words features
of uni- and bigrams, as well as character tri-
grams. In contrast to (Mohammad et al., 2013)
our system does not use trigrams or character
ngrams of higher order, because it degraded the
performance on the validation set.

sentiment features for every tweet and every lexi-
con we add the following features: number of
tokens in the tweet that occur in the lexicon,
sum of all sentiment scores in the tweet, maxi-
mum sentiment score, and the sentiment score
of the last token in the tweet.

CNN output to inform the SVM about the CNN’s
classification decision and certainty, we add the
softmax output of the CNN as an additional fea-
ture.

http://sentiment.christopherpotts.net/
lingstruc.html
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As linear SVM implementation we use LIBLIN-
EAR (Fan et al., 2008).

3.3 SVM2

Analyzing the CNN and SVM1 predictions we
found that both classifiers learn orthogonal features.
Therefore, we introduce a second linear SVM into
the classification pipeline, which combines the soft-
max probabilities of the CNN and the confidence
scores of the first SVM. The output is the final pre-
dicted polarity label of our system.

4 Experiments

Twitter’s terms of service do not allow to provide
tweets as text. Instead, the participants of the
SemEval 2015 task had to download the tweets us-
ing a list of user and tweet IDs. However, not all
tweets are still available. After downloading, our
training data comprises a total of 8394 tweets, 3133
of which are positive, 1237 negative, and 4023 neu-
tral. The evaluation is done on two separate test sets.
The first test set, the progress test set, was used as
test set in previous years of SemEval 2013 (Nakov
et al., 2013) and SemEval 2014 (Rosenthal et al.,
2014). It consists of 3506 positive, 1541 negative,
and 3940 neutral short text (a total of 8987). This
set contains not only Twitter texts, but also SMS
text messages, blog posts (LiveJournal), and tweets
that are marked as sarcastic. The second test set,
the SemEval 2015 test set, contains 2390 Twitter
tweets, 1038 positive, 365 negative, and 987 neu-
tral. Table 1 lists all test set sizes in detail. As eval-
uation measure the organizers chose to report the
macro F} score of positive and negative examples,
i-e-a Fl,macro = (Fl,positive + Fl,negative) /2

The CNN is trained using minibatch stochastic
gradient descent with a batch size of 200 examples.
For learning rate adaptation we use AdaGrad (Duchi
et al., 2011) with an initial learning rate of 0.001.
lo with A = 0.001 is utilized to avoid overfitting
as much as possible. The embeddings size is set
to 50. In the first convolution layer, we use 30 fil-
ters with a m = b5, which means it spans 5 words.
The second convolution layer uses 10 filters with
m = 3. The three hidden layers have sizes 200,
40, and 200. This choice of layer sizes with a bot-
tleneck layer between two larger layers is frequently



Table 1: Test set sizes and results

‘ #pOS #Heg #neu ‘ Fl,positive FLnegative Fl,neutral FLmacrO
SemkEval 2013 Twitter 1572 601 1640 71.32 58.31 72.53 64.82
SemEval 2013 SMS 492 394 1207 66.94 63.34 80.33 65.14
SemEval 2014 LiveJournal 427 304 411 71.09 71.84 69.04 71.47
SemEval 2014 Twitter 982 202 669 73.63 58.47 67.14 66.05
SemEval 2014 Twitter sarcasm 33 40 13 60.00 38.46 53.33 49.23
SemEval 2015 Twitter | 1038 365 987 | 6532 53.82 68.06 59.57

used in automated speech recognition systems. For
example Grézl et al. (2007) showed that using the
bottleneck layer’s output leads to lower word error
rates than using hidden layer outputs. However, our
experimental results show that using the output of
the CNN softmax layer as input for the first SVM
achieves slightly better performance than using the
output of the bottle-neck layer.

For both linear SVMs we tune the C' parameter on
the validation data.

Results The last line in Table 1 lists the F} per-
formances of our system on the SemEval 2015 test
set. The performance on negative examples is much
worse than on positive or neutral examples. This is
due to the small number of negative training exam-
ples. The macro Fj score of 59.57 leads to rank 20
out of 40 participants in this year’s SemEval. The
fact that our system scores much better on LifeJour-
nal and the SMS data in terms of F| j,cgative SUZZESES
that Twitter is an especially difficult medium for au-
tomated analysis.

The performance difference on Twitter from 2013
and 2014 compared to Twitter 2015 suggests that
this year’s Twitter data was different than in the
years before. Our system scored similarly on Twitter
from 2013 and 2014, but worse on 2015. Even worse
results are achieved on the sarcasm data. However,
the results should be taken with care, because this
sub set is very small.

5 Related Work

One early work that used CNNs to model sentences
was published by Collobert et al. (2011). They used
one convolution layer followed by a max pooling
layer to create a sentence representation. We extend
their method by incorporating additional features fo-
cused on the polarity classification task. In contrast
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to their approach, we do not embed our external fea-
tures, but make direct use of them.

Kalchbrenner et al. (2014) show that a CNN for
modeling sentences can achieve competitive results
in polarity classification. Among others, they intro-
duce dynamic k-max pooling, a method that adapts
max pooling to the length of an input sentence.
Compared to their work we use a simpler architec-
ture of the CNN without max-pooling, because this
technique did not show any improvements in our ex-
periments. Furthermore, we use the same filter for
each dimension to reduce the number of parameters,
whereas their model uses a different filter per dimen-
sion. Finally, our CNN model is combined with an-
other classifier to produce the final polarity label.

Using an SVM for polarity classification is a com-
mon approach. One of the first polarity classification
systems used bag-of-words features and an SVM to
classify the polarity of movie reviews (Pang et al.,
2002). The winning system of SemEval 2013 and
SemEval 2014 also used an SVM with many dif-
ferent features (Mohammad et al., 2013). We im-
plemented their most helpful features, which is bag-
of-words and lexicon features and added the CNN
output as an additional feature to improve the final
performance.

6 Conclusion

This paper summarizes the features of our automatic
sentiment analysis system — CIS-positive — for the
SemEval 2015 shared task - Task 10, subtask B. We
carefully normalize the Twitter data and integrate the
output of convolutional neural networks into support
vector machines for the polarity classification. Our
system achieves a macro F-score of 59.57 on the
SemEval 2015 test data. Among the 40 participants
in this subtask our system reached rank 20 with a
distance of 5.0 I} points to the winning system.
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