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Abstract

Natural language processing and text analy-
sis methods offer the potential of uncovering
hidden associations from large amounts of un-
processed texts. The SemEval-2015 Analy-
sis of Clinical Text task aimed at fostering re-
search on the application of these methods in
the clinical domain. The proposed task con-
sisted of disorder identification with normal-
ization to SNOMED-CT concepts, and disor-
der attribute identification, or template filling.

We participated in both sub-tasks, using a
combination of machine-learning and rules
for recognizing and normalizing disease men-
tions, and rule-based methods for template
filling. We achieved an F-score of 71.2% in
the entity recognition and normalization task,
and a slot weighted accuracy of 69.5% in the
template filling task.

1 Introduction

Biomedical text mining offers the promise of lever-
aging the huge amounts of information available
on scientific documents to help raise new hypothe-
ses and uncover hidden knowledge. Biomedical
text mining (TM) has been an important focus of
research during the last years, sustained by the
high volumes of data, the diverse computational
and multi-disciplinary challenges posed, and by the
potential impact of new discoveries (Simpson and
Demner-Fushman, 2012). These benefits have been
demonstrated in recent studies in which text mining
methods were used to suggest biomarkers for diag-
nosis and for measuring disease progression, targets
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for new drugs, or new uses for existing drugs (Fri-
jters et al., 2010). Likewise, clinical information
stored as natural language text in discharge notes
and reports could be exploited to identify important
associations, and this has led to an increased interest
in applying text mining techniques to such texts, in
order to extract information related to diseases, med-
ications, and adverse drug events, for example (Zhu
et al., 2013).

Research efforts in biomedical text mining have
led to the development of various methods and tools
for the recognition of diverse entities, including
species names, genes and proteins, chemicals and
drugs, anatomical concepts and diseases. These
methods are based on dictionaries, rules, and ma-
chine learning, or a combination of those depend-
ing on the specificities and requirements of each
concept type. After identifying entity mentions in
text, it becomes necessary to perform entity normal-
ization, which consists in assigning a specific con-
cept identifier to each entity. This is usually per-
formed by matching the identified entities against
a knowledge-base, possibly evaluating the textual
context in which the entity occurred to identify the
best matching concept.

Following up on the 2014 task, in which the ob-
jective was the identification and normalization of
disease concepts in clinical texts (Pradhan et al.,
2014), two subtasks were defined for the SemEval-
2015 Analysis of Clinical Text task. Task 1 con-
sisted of recognizing concepts belonging to the
‘disorders’ semantic group of the Unified Medical
Language System (UMLS) and normalizing to the
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Figure 1: Neji’s processing pipeline used for annotating the documents. Dashed boxes indicate optional modules.

SNOMED CT! terminology, and Task 2 consisted
of identifying and normalizing specific attributes for
each disorder mention, including negation, severity,
and body location, for example. The task made use
of the ShARe corpus (Pradhan et al., 2013), which
contains manually annotated clinical notes from the
MIMIC 1I database® (Saeed et al., 2011). The task
corpus comprised 531 documents, divided into a
training portion with 298 documents, a development
portion with 133 documents, and a test portion with
100 documents.

In this paper, we present a combined machine-
learning and rule-based approach for these tasks,
supported by a modular text analysis and annotation
pipeline.

2 Methods

Our approach consists of three sequential steps,
namely: entity recognition, rule-based span adjust-
ment and normalization, and rule-based template
filling. For entity recognition we used Gimli (Cam-
pos et al., 2013b), an open-source tool for training
machine learning (ML) models that includes simple
configuration of the feature extraction process, and
Neji, a framework for biomedical concept recogni-
tion, integrating modules for natural language pro-
cessing (NLP) and information extraction (IE), spe-

"http://www.ihtsdo.org/snomed-ct/
2http://mimic.physionet.org/database.html
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cially tuned for the biomedical domain (Campos et
al., 2013a). Figure 1 shows the complete processing
pipeline.

2.1 Entity Recognition

We applied a supervised machine-learning ap-
proach, based on Conditional Random Fields
(CRFs) (Lafferty et al., 2001; McCallum, 2002).
The BIO (Beginning, Inside, Outside) scheme was
used to encode the entity annotations. To select the
best combination of features, we performed back-
ward feature elimination using the supplied train-
ing and development data to create and evaluate the
models. We then used all the data to train a first-
order CRF model with the final feature set, which
consisted of the following features:

e NLP features:

— Token and lemma

e Orthographic features:

— Capitalization (e.g., “StartCap” and “All-
Caps”);

— Digits and capitalized characters counting
(e.g., “TwoDigit” and “TwoCap”);

— Symbols (e.g., “Dash”, “Dot”
“Comma”);

and

e Morphological features:



— Suffixes and char n-grams of 2, 3 and 4
characters;

e Local context:

— Conjunctions of lemma and POS features,
built from the windows {-1, 0}, {-2, -1},
{0, 1}, {-1, 1} and {-3, -1} around the
current token.

Apart from the ML model, documents were also
annotated with dictionaries for the UMLS ‘Dis-
orders’ semantic group and a specially compiled
acronyms dictionary, as used in the 2014 edition of
the task (Matos et al., 2014). In total, these dictio-
naries contain almost 1.5 million terms, of which
525 thousand (36%) are distinct terms, for nearly
293 thousand distinct concept identifiers. Including
this dictionary-matching step produced a small im-
provement in terms of F-score.

2.2 Normalization

According to the task description, only those UMLS
concepts that could be mapped to a SNOMED-CT
identifier should be considered in the normalization
step, while all other entities should be added to the
results without a concept identifier. To achieve this
step, we indexed the terms of the UMLS concepts
that included a SNOMED-CT identifier in a Solr 3
instance. Additionally, we also indexed each term
that occurred in the training and development data,
together with the corresponding identifier.

To perform normalization of an identified entity
mention, we follow a series of steps. First we search
the index for the exact term and, if it is found as a
gold-standard annotation on the training data, we as-
sign the same identifier to the new mention. If multi-
ple identifiers were used on the training data for the
same term, we keep the most commonly assigned
one. If the exact mention is not found on the train-
ing data, we try to remove a set of 162 prefix (e.g.
‘chronic’, ‘acute’, ‘large’) and 48 suffix terms (e.g.
‘changes’, ‘episodes’) obtained from an error analy-
sis on the development data. We then look for this
adjusted term on the gold standard annotations and
on the UMLS concept synonyms, and use the cor-
responding identifier and the adjusted mention span.

3http://lucene.apache.org/solr/
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Finally, we try to expand the term to include anatom-
ical regions occurring before or after the identified
disorder mention, in order to identify more specific
concepts. If such a concept is found on the index,
the corrected span is used, together with the corre-
sponding identifier.

2.3 Template Filling

This subtask consists of identifying various at-
tributes of the disorders, such as negation or un-
certainty, and normalizing their values according to
the nomenclature specified by the task. To address
this task, we followed a rule-based approach. For
each type of attribute, or slot, we compiled the cue
words and the corresponding normalized value from
the training and development data. We then created
patterns, implemented through regular expressions,
to locate these possible cues in the vicinity of each
disorder term. To apply the regular expressions, we
replace each entity mention in the texts by a generic
placeholder, adjusting the cue word spans accord-
ingly when a match is found. For example, to fill the
‘Severity’ attribute we look for the occurrence of a
cue word, associated to this attribute in the training
data, that occurs up to n* characters before or after
a disorder mention. This can be expressed by the
following regular expression, in which only two al-
ternative cue words are shown for brevity:

(mild|sharp|...)\s.{0,15}?_ DISO_
_ DISO__\s.{0,15}?(mild|sharp|...)

3 Results and Discussion

3.1 Evaluation Metrics

Task 1 was evaluated by strict and relaxed F-scores.
In the first case, the identified text span has to be ex-
actly the same as the gold-standard annotation, and
the predicted concept identifier has to match the gold
annotation. In the second case, a prediction is con-
sidered a true-positive is there is any word overlap
between the predicted span and the gold-standard,
as long as the identified is correctly predicted.

Task 2 was evaluated in terms of weighted accu-
racy, which is calculated using a pre-assigned weight
for each slot based on its prevalence in the training
set.

*n was empirically set as 5 for the body location attribute,
and 15 for all other attributes



Task 1 performance (P /R /F)
Development Test
Run Strict Relaxed Strict Relaxed
1 48.1/54.4/51.0 51.8/58.0/54.7 | 0.669/0.738/0.702 0.698/0.769/0.732
2 62.3/70.6/66.2 67.5/74.7/70.9 | 0.690/0.736/0.712 0.719/0.766 / 0.742
3 62.3/70.5/66.1 67.4/74.5/70.8 | 0.691/0.735/0.712 0.720/0.765/ 0.742

Table 1: Development results and official results on the test dataset, for Task 1. P: Precision; R: Recall; F: F-score.

3.2 Test Results

We submitted three runs of annotations for the doc-
uments in the test set, as described below:

e Run 1: In this run, the identified disorder men-
tions were not first checked against the training
data annotations;

e Run 2: The identified disorder mentions were
first checked against the training data annota-
tions and the corresponding identifier was used;

e Run 3: Same as Run 2, but the machine learn-
ing model was trained only on discharge doc-
uments, that is, other document types were not
used in the training.

Table 1 shows the results obtained on the devel-
opment set, and the official results obtained on the
test set for each submitted run in Task 1.

As can be observed from the results, using the
identifiers assigned in the training data for disease
mentions that re-occur in the test data has a very
positive impact on the results, increasing precision
by 2%. Although this approach may be considered
to artificially improve the results, the rationale for
using it is that human annotators tend to re-use the
same identifier in the case of a ambiguous term. The
same might also be true for clinical coders when pro-
cessing the patient notes.

Comparing our results to the best submitted runs,
we verify that we obtain the best recall rates when
considering both strict and relaxed scores, but with a
significant drop in precision when compared to those
results.

Figure 2 illustrates the results obtained on the
template filling task. We achieved a slot weighted
accuracy of 69.5%. Comparing the results, we
achieved the best accuracy for the disease CUI slot.
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On the other hand, we achieved considerable lower
accuracies on the body location and conditional
slots, when compared to the top performing runs.

4 Conclusions

We present results for the recognition, normalization
and template filling of disorder concepts in clinical
texts, using a machine-learning and rule-based ap-
proach. We achieved a strict F-score of 71.2% and
a relaxed F-score of 74.2%, and obtained the best
recall under both evaluation modes. One of the rea-
sons for the lower precision is related to the normal-
ization method. As future work, we will continue
developing this step.

We applied a simple rule-based approach for the
template filling task, and achieved a weighted accu-
racy of 69.5%. We aim to continue improving this
information extraction step, by acquiring a larger set
of possible cue words and revising some of the ex-
traction rules.
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