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Abstract 

We describe the performance of UtahPOET 

on SemEval 2015 Task 14. UtahPOET is a 

cognitively inspired system designed to ex-

tract semantic content from general clinical 

texts. We find that our system performs much 

better on the context slot-filling aspects of 

Tasks 2A and 2B than the disorder CUI map-

ping of Tasks 1 and 2B or the body location 

CUI mapping of Task 2B. Our problems with 

CUI mapping suggested several possible sys-

tem improvements. An alteration in the corre-

spondence between the system architecture 

and psycholinguistic findings is also indicat-

ed. 

1 Introduction 

We note at the outset that our team approaches 

clinical NLP using a new, cognitively inspired ar-

chitecture. We value dataset independence, so our 

design priorities do not completely overlap those 

encompassed by the goals of Task 14. We share 

the SemEval vision of extracting the full semantic 

content of clinical text. Our short-term goal, how-

ever, was to field test an early prototype of our 

new architecture and Task 14 provided a conven-

ient and well-designed use case.  

1.1 Cognitive inspirations 

Only the human brain is currently able to extract 

full semantic content from text. We propose an 

intermediate step between artificial neurons (Mer-

olla et al., 2014; Sowa, 2010) and statistical ma-

chine learning (ML). We use ML and rule-based 

NLP components with demonstrated success in 

clinical information extraction arranged in an ar-

chitecture inspired by well-documented findings 

with respect to cortical processing.  

Briefly, UtahPOET is inspired by findings re-

lated to: layered cognitive processes, the distinc-

tion between the dorsal and ventral language 

processing streams, and the phenomenon of itera-

tive refinement. The type of layered (i.e., staged or 

hierarchical) processing we use shares much in 

common with traditional NLP and biologically 

inspired cognitive architectures (Chella, Cossenti-

no, Gaglio, & Seidita, 2012; Indurkhya & 

Damerau, 2010; Sowa, 2010). We will discuss our 

system’s layering in the system description below.  

Our distinctive model of dorsal-ventral pro-

cessing streams comes from psycholinguistic find-

ings. The interpretation of unfamiliar or 

ungrammatical constructions, rule-based pro-

cessing, and learning have been linked to dorsal 

processing streams in the brain. Ventral processing 

streams handle familiar, expected, regular con-
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structions as well as heuristic-type processing  

(Dominey & Inui, 2009; Hickok & Poeppel, 2004; 

Kellmeyer et al., 2013; Levy et al., 2009; Price, 

2013; Yeatman, Rauschecker, & Wandell, 2013). 

Iterative refinement is the repeated application of 

top-down processing during bottom-up processing. 

In Cognitive Science top-down and bottom-up re-

fer, in essence, to processes that rely on previous 

knowledge and those that do not, respectively 

(Traxler, 2012). 

Top-down processing is evident in each stage of 

an NLP pipeline, e.g., “knowing” how the end of a 

sentence is marked. We see combining world 

knowledge with the outcome of one processing 

stage and then using that to update the outcome of 

a previous stage as iterative refinement. This re-

sembles how humans ‘re-parse’ garden path sen-

tences (McKoon & Ratcliff, 2007). 

The UtahPOET approaches solving semantic 

extraction problems by enabling dependency pars-

ing. However, ungrammatical text is common in 

clinical notes (Fan et al., 2013; Meystre, Savova, 

Kipper-Schuler, & Hurdle, 2008). This text often 

“breaks” dependency parsers, so we process 

grammatical and ungrammatical text separately. 

Dependency parsing is useful because it exploits 

world knowledge about the structure of English 

sentences. As such, it simplifies the processing of 

conjunctions and the aggregation of words and re-

lationships, particularly those separated in the text, 

without supervised training. Retaining sentence 

structure allows dataset independence and latitude 

in future relationship finding. 

1.2 Considerations for evaluation 

We propose a couple of considerations useful for 

evaluating NLP systems’ results under Task 14. 

The current evaluation includes strict matching to a 

Gold Standard set of Unified Medical Library Sys-

tem (UMLS) Metathesaurus (Browne, Divita, Ar-

onson, & McCray, 2003) CUIs. We think this 

standard leads to over-fitting the data, which leads 

to less generally useful systems. Clinical terms do 

not guarantee a one-to-one correspondence be-

tween term and referent. A point demonstrated by 

inter-annotator agreement of anything less than 

100%.  

The redundancy of the UMLS Methathesaurus 

further undermines strict CUI mapping. Redundan-

cy is best illustrated by body location mapping. 

Within the UMLS semantic types relevant to body 

location are T023 (Body part, organ or organ com-

ponent) and T029 (Body location or region). We 

notice inconsistency in the Gold Standard in the 

use of these semantic types. For one document an-

notators chose ‘Pericardial sac structure (T023)’ 

over “Pericardial body location (T029)’, while in 

another annotators preferred ‘Neck (T029)’ over 

‘Entire neck (T023).’  

Partial matches create problems as well. The 

Task evaluation only considers partial span match-

es correct if the CUI for the full match is reported. 

However, if the span is only partially matched the 

correct CUI should change. For example, the map-

ping ‘Left ventricular hypertrophy’ to C0149721, 

when partially matched with ‘Ventricular hyper-

trophy’ would seem to be more correctly mapped 

to C0340279. 

2 System description 

The UtahPOET system is built in Apache UIMA 

(Ferrucci & Lally, 1999). It has the layered struc-

ture common to NLP pipelines (see Figure 1). The 

pre-processing stage finds sentence boundaries 

(stages A), breaks the sentence into tokens (stage 

B), and assigns each token a part-of-speech (POS) 

tag (stage B).  

2.1 Dorsal-ventral stream separation and it-

erative refinement 

After preprocessing, we add stages to begin dorsal 

and ventral separation and iterative refinement. In 

stage C, we divide dorsal and ventral streams by 

separating ungrammatical and grammatical text. 

We refer to ungrammatical text as nonprose 

qs_segments. Nonprose is differentiated from prose 

(well-formed sentences) by two rules. First, well-

formed sentences contain at least one verb. Sec-

ond, well-formed sentences do not contain more 

than four numbers (e.g., labs) per verb.  

Iterative refinement occurs in Stage D. Realiz-

ing that standard sentence segmentation may not 

perform well with nonprose (e.g., consider com-

mon lists like medications with no periods), we 

then re-segment the text breaking each nonprose 

qs_segment at the next carriage return, line break, 

or end-of-line character. The dotted line in Figure 

1 signifies that it is a repeated process. 
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Figure 1. The overall UIMA pipeline for UtahPOET (please zoom for readability). 

 

2.2 UtahPOET specific parallel ‘prepro-

cessing’ 

UtahPOET has section header identification and 

short-form expansion processes that run parallel to 

the ‘pre-processing’ stages. These stages are E and 

F in Figure 1. 

In stage E regular expressions are used to identi-

fy section headers. The regular expression rules are 

found using automatic regular expression extrac-

tion (Bui & Zeng-Treitler, 2014). 

In stage F, a series of SVMs are used to expand 

short forms. The feature vectors for these SVMs 

include context vectors as bags-of-words and sec-

tion headers. The short form-long form pairs are 

extracted from the ADAM dataset (Zhou, Torvik, 

& Smalheiser, 2006) but limited to clinical terms. 

One classifier is trained for each ambiguous nor-

malized short form that has multiple corresponding 

long forms. Classifiers are trained using the UMN 

clinical abbreviation and acronym sense inventory 

(Moon, Pahkhomov, Liu, Ryan, & Melton, 2014) 

and context information retrieved from PubMed 

case reports. The features are built on LVG 

(Browne et al., 2003) normalized bag of word, sec-

tion header and short form string. The expanded 

short forms are inserted into the original text, pre-

serving the original span information in UIMA 

annotations for span matching back to original text 

in the final stage. 

2.3 Disorder detection in dorsal and ventral 

streams 

Stage G has two purposes: to identify single-word 

disorder terms and to limit the number of words 

that will be looked up in later stages. After stop-

words are removed, each word in the document is 

stemmed using LVG (Browne et al., 2003) and 

fetched from a Lucene index made from the UMLS 

Metathesaurus restricted to the clinical sources 

indicated in (Wu et al., 2012), including 

SNOMEDCT, MSH, NCI, RDC, MTH, SNMI, 

MDR, SCTSPA, CHV, CCPS. The sematic types 

included reflect disorders, body locations, and 

modifiers. Modifiers include qualitative, quantita-

tive and spatial concepts.  

For the identification of multi-word terms and 

context slot filling in stages H and I, we split the 

text segments based on the previously described 

nonprose (stage H) prose (stage I) distinction. The 

dorsal stream is associated with rule-based pro-

cessing. In this case the rule associated with 

nonprose qs_segments, is that adjacent unigram 

disorder terms are likely to be part of a multi-word 

term. Equivalently, the body location and severity 

relevant to a disorder will be adjacent to the disor-

der mention. The ventral processing stream ex-

ploits world knowledge about regularity of 

construction by dependency parsing. Unigram 

matches that share dependencies are likely to be 

part of a multi-word term and reflect relevant body 

locations and severities.  

In both stages (H and I), we build as long a mul-

ti-word term as possible then attempt to match the 

term to a Lucene index into the UMLS Metathe-

saurus restricted to the clinical sources listed above 

and only the disorder semantic types. If the term 

does not match, it is incrementally reduced token-

by-token, with all combinations of words checked 

for a match at each step. 

Context slots are filled by overwriting entries in 

a default template: the mention is not negated, the 
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subject is the patient, the mention is not uncertain, 

severity and course are unmarked, the mention is 

not conditional or generic, and there is no body 

location given.  

Negation, uncertainty, subject, and generic 

mention are found at the sentence level in nonprose 

and the dependency level in prose by looking for 

specific text. The remaining slot values were locat-

ed by adjacency (nonprose) or dependency (prose).  

2.4 Post-processing 

Stage K takes place outside of UIMA. It collapses 

expanded short-forms back to their original spans 

and updates spans of all the other annotations in 

the file so our output spans reflect those from the 

SemEval gold standard. Stage L (SemEval clean 

up) is the final stage of the pipeline in Figure 1. 

Here we map, where possible, disorder CUIs from 

SNOMED CT. This stage also incorporates a pro-

cess for identifying terms matched to the UMLS 

Metathesaurus semantic type finding (T033) that 

are considered CUI-less disorders in the SemEval 

gold standard. We use a structured SVM to classify 

the spans of findings to CUI-less disorder or not. 

We used the Cornell SVM
struct

 SVM
hmm

 model. 

(Joachims, n.d.) Feature vectors are 4-word con-

text-window (2 before and 2 after), bag-of-words 

stemmed with stopwords removed using NLTK 

(Bird, Loper, & Klein, 2009). The SVM parame-

ters were slack vs. weight vector magnitude (-c) of 

25000 and epsilon (-e) of 0.5.  

This stage also removes all disorders found 

within section headers as well as annotations that 

reflect either spurious UMLS Metathesaurus map-

pings or problems with short-form expansion. 

3 Results  

UtahPOET was not expected to perform well on 

either Task 1 or Task 2A. In both cases, our un-

willingness to adhere to the gold standard CUIs 

caused us to score at the bottom of the pack. Six-

teen teams competed in Task 1. We were 15th. On-

ly 6 teams competed in Task 2A, we were last. 

Considering the context slot filling, apart from CUI 

and body location, in Task 2A would have moved 

us up one rank.  

We were mainly focused on Task 2B where we 

scored in the middle of the pack until many of the 

teams withdrew. Nine teams remain in the Task 2B 

competition. Our three runs come second to the 

last. Again looking at only slot filling, we would 

have moved up three ranks. 

Our results for the development set closely mir-

rored those on the test set; so will not be described. 

3.1 Difference between runs 

We were unsure whether scoring favored F-scores 

or accuracy so we submitted runs favoring one or 

the other. For both tasks, we submitted 2 copies of 

our best run in case there was a problem creating 

one of the submissions. If one failed, there would 

still be one left. In tasks 1 and 2A runs 1 and 2 

were the same. Run 3 had a stricter Lucene match 

leading to higher accuracy and lower F-score (i.e., 

reduced numbers of true positive, false positive 

and false negative concepts). The stricter match 

required that only the words found in the document 

appear in the matched term, no extra words were 

allowed. Thus, “hypertension” would not match 

the UMLS Metathesaurus entry “hypertensive dis-

ease.” In task 2B, runs 2 and 3 are the same. This 

time run 1 has a slightly higher accuracy, but lower 

F-score due to change in Lucene matching. 

For task 2A, we also realized that we could use 

the gold standard spans to match the context found 

by UtahPOET without finding an associated con-

cept, if we reported the span as a CUI-less disor-

der. 

 
Table 2. Examples of CUI mapping error for dis-

orders (please zoom for readability). 

3.2 CUI and body location error analysis 

Tables 2 and 3 list examples of the CUI mapping 

errors made by UtahPOET. For disorders, they fall 

into three increasingly large groups, system prob-

lems, UMLS diffuseness, and disagreement with 

the gold standard. 
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CUI-mapping errors in body location assign-

ment were, in increasing order of size, due to sys-

tem problems, disagreement with the gold standard 

and near misses or equivalences. 

 

 
Table 3. Examples of CUI mapping error for body 

locations.  

4 Discussion 

The UtahPOET system can successfully extract 

semantic information from clinical text. The sys-

tem construction has slightly different priorities 

than the Task organizers. Our priority of creating a 

dataset agnostic solution for semantic extraction 

problems prompted us to offer considerations for 

the evaluation and to look to cognitive findings for 

system design inspiration. 

4.1 Implications for system improvement 

Necessary system alterations are revealed by dis-

order CUI mapping error analysis in Table 3. CUI-

less disorders are the most error prone. We will be 

adding features to the CUI-less disorder SVM to 

improve performance. Two mapping mistakes 

‘CT’ and ‘he’ that may be fixed by a walk back to 

the most common form. We will investigate a 

method to implement a walk back. Standardizing 

the expanded long-forms would catch the missed 

‘SOB’ mappings. Checking for phrase ‘secondary 

to’ would also be helpful. 

We find support for our evaluation considera-

tions above in CUI and body location mappings, 

which disagree with the gold standard. For exam-

ple, if ‘shortness of breath’ is given the body loca-

tion ‘breath,’ giving ‘vomiting’ to body location 

‘vomitus’ and ‘drainage’ to location ‘body fluid 

discharge’ should be acceptable. 

UtahPOET is prone to near misses. We see 

these near misses as a type of graceful degradation, 

which is a hallmark of cognitive systems. Graceful 

degradation is the ability to function despite mak-

ing errors. Ferreira and Patson call this “good 

enough” processing (Ferreira & Patson, 2007). 

4.2 Implications for cognitive architecture 

The hierarchical layers from psycholinguistics are 

lexical, syntactic and semantic processing, which 

proceed in that order. We do not adhere strictly to 

this hierarchy. Many cognitive scientists think a 

proper hierarchy is unlikely (Frank, Bod, & Chris-

tiansen, 2012).  

We were inspired to separate prose and 

nonprose based on the ventral-dorsal distinction 

between grammatical and ungrammatical text. It is 

tempting to equate heuristics with ML and rules 

with specific if…then statements. The cognitive 

science literature indicates that this is a mistake 

(Hahn & Chater, 1998). All heuristics are thought 

to start as rule-based. The rule-based decision is 

overlearned to the point of automaticity and called 

a heuristic. Therefore we do not use ML compo-

nents in only one path. 

Currently, UtahPOET leverages iterative re-

finement for sentence segmentation only. Once we 

implement greater integration with long-term 

memory (LTM) representation, we will have the 

facility to recognize clashes and implement more 

extensive iterative refinement. With our ML com-

ponents, we can clearly see how learning requires 

its own pathway. Each of these systems is trained 

outside the UtahPOET pipeline and would require 

retraining, if new information were introduced. 
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