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Abstract

In this paper we describe our entry to the Se-
mEval 2015 clinical text analysis task. We
participated only in the disorder attribute de-
tection task 2a. Our main goal was to as-
sess how well an information extraction sys-
tem originally developed for a different task
and domain can be utilized in this task. Our
system, based on SVM and CRF classifiers,
showed promising results, placing 3rd out of
6 participants in this task with performance of
0.857 measured in weighted accuracy, the of-
ficial evaluation metric.

1 Introduction

SemEval 2015 introduced a new subtask for the clin-
ical text analysis track focusing on disorder mention
attribute detection. These attributes describe the rel-
evant information extracted from the textual context
of the given disease mention, such as the severity
or body location of the disease. The attributes were
grouped into 9 separate categories, each with a pre-
defined set of valid attribute classes. The task was
defined as a template filling task where the textual
cue words for the attributes have to be first identi-
fied and then normalized to the correct class. Similar
task with slightly different definition has previously
been organized as part of the ShARe/CLEF eHealth
shared task (Mowery et al., 2014).

Due to time limitations we participated only in the
task 2a in which the gold standard disorder mentions
were given and only the attribute values had to be
predicted. Our main motivation for this years en-
try was to evaluate the performance of an existing

information extraction system, TEES (Björne and
Salakoski, 2013), previously developed for a dif-
ferent domain and to assess how easily it can be
adapted to a new task.

2 System Description

Turku Event Extraction System (TEES) was origi-
nally developed in 2009 for the BioNLP Shared Task
on Event Extraction (Kim et al., 2009). This task fo-
cused on the extraction of biological processes and
interactions between genes and proteins (GGPs) de-
scribed in biomedical literature. In this task each
event, i.e. biological process or interaction, is rep-
resented by a trigger word, which also describes the
type of the event, and a set of argument GGP men-
tions. The argument GGPs may also act in various
roles, i.e. each argument is also typed. The par-
ticipants were thus required to detect these trigger
words, their types from a predefined set and the ar-
guments, i.e. the relations between the trigger words
and GGPs. Gold standard gene and protein mentions
were provided by the organizers and consequently
TEES does not include tools for named entity recog-
nition, but presumes these to be given as input data.
An example sentence along with the extracted event
is illustrated in figure 1.

TEES was the best performing system in the 2009
BioNLP Shared Task as well as in various subtasks
in subsequent years (Björne and Salakoski, 2011;
Nédellec et al., 2013) showing state-of-the-art per-
formance in biomedical event extraction. Whereas
the event extraction task requires the detection of
trigger words and argument relations, the disorder
attribute detection can be solved by first finding the
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Figure 1: Visualization of an extracted event. In BioNLP Shared Task on Event Extraction the GGP mentions are
given and the participants are asked to detect the trigger words, here activates and phosphorylation, as well as the
relation between these entities.

cue words and then relating them to the correct dis-
ease mentions, making TEES applicable also for this
task.

2.1 Cue Word and Relation Detection

TEES consists of two main processing stages. The
first step, called trigger detection, resembles com-
mon NER classification task, and classifies each to-
ken in the text to either negative class or one of the
positive classes, i.e. the predefined trigger types. In
this task the trigger detector is used to detect the at-
tribute cue words and their classes.

The second step detects relations between the
known named entities and trigger words. This is im-
plemented by generating all plausible entity pairs in
a sentence in which case the task becomes a simple
classification problem: each pair is classified to ei-
ther negative class or a positive class resembling the
type of the relation.

As trigger and relation detection tasks are both
multiclass classification problems, they have been
implemented with a multiclass SVM (Tsochan-
taridis et al., 2004) using the SVMmulticlass software,
bundled with TEES. TEES generates a vast amount
of classification features from the examined words
as well as their context. The relation detection, in
particular, relies heavily on syntactic dependencies.

The optimal value for C-parameter is selected in-
dependently for each step. However, the indepen-
dently optimized trigger detection model may not re-
sult in the optimal overall system. This is due to the
fact that the relation detector is able to discard un-
wanted triggers, but cannot recover from low trigger
detection recall. To overcome this issue, the recall of
the trigger detector is artificially increased and the
final verdict is made by the relation detector. The
amount of overgeneration is selected by evaluating
the overall performance of the system.

Whereas TEES relies on graph based data repre-
sentation with textual entities and the relations be-

tween them, the disorder attribute detection task in
SemEval 2015 is defined as a slot filling problem.
The main issue in the conversion between these two
formats is that the default normalization slot values
with the corresponding cue defined as null cannot
be represented in TEES format. Due to this, the de-
fault value was decided to be the negative class. In
this definition, our system is only aiming to predict
the non-default values and if no cue word and a re-
lation between the cue word and disorder entity can
be found the default value is preserved. As the slot
filling format defines different categories and prede-
fined normalization classes inside these categories,
whereas TEES uses a single class for each trigger,
the category and normalization classes are concate-
nated into a single class. E.g. our system is not
aware that cue word classes SV slight and SV severe
are both normalization values of the severity cate-
gory, but sees them as independent classes. The rela-
tions between cue words and disorder mentions are
predicted to only exist or not, i.e. the relations are
not typed.

2.2 Body Location Detection

In our evaluation on the development set, the perfor-
mance of the TEES trigger detector was extremely
poor for the body location attributes. This might be
due to various reasons. Firstly, whereas the other
attribute categories are rather closed sets of expres-
sions, the body locations are named entities. Sec-
ondly, TEES does not use any features tailored for
the clinical domain and thus generalizes poorly to
body location mentions not seen on the training data,
resulting in a high precision and low recall system.

As the first attempt to adapt TEES to this task and
generalize better for the body locations, we included
dictionary features for the trigger detection stage.
The used dictionary was composed of the UMLS
concepts included in the semantic categories “Body
Part, Organ, or Organ Component”, “Body Loca-
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tion or Region”, “Body System”, “Body Space or
Junction”, “Body Substance”, “Tissue”, “Cell” and
“Embryonic Structure”. These semantic types cover
98.9% of the body locations seen in the training data.
For each concept, the preferred term as well as the
synonyms were included in the dictionary.

The addition of these features did not improve our
performance significantly and thus in the final sys-
tem, the TEES trigger detector was replaced with a
CRF classifier for the body locations. In this ap-
proach we used the NERsuite software based on the
CRFsuite implementation (Okazaki, 2007). In addi-
tion to the standard features such as the word form,
lemma, part-of-speech tag and text chunk we in-
corporated the same dictionary features used in the
TEES trigger detector. Moreover, we trained an-
other CRF using the AnatomyTagger software and
AnatEM corpus (Pyysalo and Ananiadou, 2013).
These two models were stacked, i.e. the predictions
from the AnatEM model were given as features for
the other classifier.

As the gold standard data includes only attributes
related to a disease mention, the annotation is in-
complete for NER purposes, and thus using the
whole data resulted in poor performance. To pre-
vent this, we trained the body location NER system
with only the sentences including at least one anno-
tated body location mention. The development set
was filtered in similar fashion for evaluation pur-
poses. The feature set which resulted in the best
performance in this evaluation set was used in the fi-
nal system. This approach boosted the performance
on sentences which included at least one annotated
body location mention, but the impact on other sen-
tences is hard to assess without complete evaluation
data. However, this approach leads to a similar out-
come as the aforementioned trigger word overgen-
eration and shifts the responsibility of removing the
excessive body location mentions to the relation de-
tector.

2.3 Disorder and Body Location Normalization

The body location attribute differs from the other
categories in that the cue spans were required to be
normalized into the corresponding UMLS concepts.
As TEES does not include tools for this type of nor-
malization and the normalization was not our main
focus in this year’s entry, we used a simple tfidf-

weighted vector space model. As the first attempt
the model was created from the same UMLS con-
cepts used in the body location NER features, but
due to high amount of ambiguity this led to poor re-
sults. Consequently, we naively generated the model
from the gold standard body location annotations
and a given entity was then mapped to the UMLS
identifier of the most similar entity seen on the train-
ing set. If an entity was annotated with various iden-
tifiers in different contexts, we used the most fre-
quently occurring identifier.

The entities were predicted to be “CUI-less” if the
most similar gold standard entity was annotated as
such or if the maximum cosine similarity was zero.
Thus in this naive approach there was no need for
more complex “CUI-less” value identification as is
necessary in our previously suggested normalization
method (Kaewphan et al., 2014).

The disorder mention normalization was not part
of the original slot filling task, but was later on added
to the task definition. For simplicity we used the
same naive method as with the body location enti-
ties.

3 Results

We submitted three separate runs to the final eval-
uation. Runs 1 and 2 used the same approach, but
run 2 includes a last-minute bug fix which we were
not able to thoroughly test. This bug caused some
of the attribute mentions to be duplicated during the
conversion between SemEval and TEES data for-
mats, misleading the system. These runs use the
method described in this paper, but the system was
only allowed to predict one value for each slot. This
was forced by only selecting the value with highest
classification confidence for the relation detection;
the confidence of the trigger word detection was ig-
nored. In run 3 we allowed the system to predict
multiple body location values for each disorder men-
tion. This is beneficial in statements such as “Os-
teophytes are seen along the medial tibial plateau
as well as the superior aspect of the patella” where
both body locations tibial plateau and patella are re-
lated to the same disorder mention Osteophytes. The
results for these runs are shown in table 1 along with
the best runs from the other participated groups.

Our best performance was obtained from the run
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Team WA A
UTH-CCB 0.886 0.943
ezDI 0.880 0.934
UTU run3 0.857 0.945
UTU run2 0.855 0.944
UTU run1 0.846 0.939
UWM 0.818 0.859
TeamHCMUS 0.576 0.195
UtahPOET 0.446 0.744

Table 1: Official test set results for our 3 submissions and
the other 5 participating teams. Only the best runs mea-
sured in weighted accuracy are shown for other teams.
WA = weighted accuracy, A = non-weighted accuracy.

3 with weighted accuracy of 0.857, resulting in the
third best performing system in the task. Measured
on the non-weighted accuracy which was not the
main evaluation metric, but still included in the of-
ficial results, we achieved score 0.945, the second
best performance in the task.

Runs 1 and 2 which did not allow multiple body
locations to be predicted performed slightly worse,
run 2 achieving weighted accuracy of 0.855. This
difference between runs 2 and 3 is solely caused by
the body location category in which the difference
between these two runs is 1.1pp. The category-wise
performance is shown in table 2.

The comparison of our results to the best per-
forming system by team UTH-CCB reveals that our
system performs consistently weaker in every cate-
gory. Worth noticing is that our naive normalization
approach is not affecting our performance dramat-
ically, showing weighted accuracy of 0.827 in dis-
order normalization category (CUI), where as UTH-
CCB system achieved score of 0.854. As the gold
standard disorder mentions were given in this task,
this score is only measuring the normalization per-
formance.

Our submitted runs were all trained with the com-
bination of training and development data sets. The
overall results on development and test sets are fairly
similar showing that the system is not overfitting to
the development data. On the other hand it seems
that combining the training and development sets for
the final models does not improve the performance
significantly, although we cannot confirm this specu-
lation before the gold standard annotation for the test

data is released. As an exception to this is our nor-
malization method, which greatly benefits from the
added training data as can be seen from the +5.5pp
improvement in the CUI category. This shows that
the naive approach does not generalize well and is
applicable only when the training data covers most
of the disorder mentions seen in the test data.

4 Discussion and Future Work

The current implementation of TEES induces some
limitations for this task. Firstly, the current data for-
mat used in TEES does not allow the representation
of discontiguous entities, which are not common in
various other tasks. In this submission we thus rep-
resented the discontiguous disorder entities with a
single span during the cue word and relation detec-
tion. As the discontiguous entities are much less
frequent in the attribute entities, we discarded them
completely. As a future work we would like to allow
TEES to support this type of entities. This will re-
quire not only altering the used data format, but also
modifying the feature extraction process to be able
to fully express the characteristics of these entities.

Secondly, TEES uses micro-averaged F-score of
positive classes as the internal evaluation metric for
parameter optimization, which may be suboptimal
for tasks evaluated in different metrics. Due to this,
we plan to modify TEES to accept various user-
defined evaluation metrics.

To improve our performance in this task specifi-
cally, we need to first perform a detailed error anal-
ysis. This might reveal for instance whether some
domain specific features could improve the accuracy
of our system.

5 Conclusions

We have demonstrated that an information extrac-
tion system originally developed for scientific lit-
erature can be easily adapted to the clinical do-
main. The described system shows competitive per-
formance being the third best system in the disor-
der attribute slot filling task. We have also discussed
some of the limitations of the system and suggested
multiple future improvements for better suitability
to new task definitions and domains.

378



Team WA A BL CUI CND COU GEN NEG SEV SUB UNC
UTH-CCB 0.886 0.943 0.862 0.854 0.903 0.887 0.911 0.975 0.936 0.975 0.911
Run3 0.857 0.945 0.825 0.827 0.823 0.798 0.888 0.970 0.915 0.920 0.853
Run2 0.855 0.944 0.814 0.827 0.823 0.798 0.888 0.970 0.915 0.920 0.853
Run3 devel 0.830 0.933 0.798 0.772 0.862 0.848 0.864 0.941 0.940 0.920 0.872

Table 2: Performance of our system in each attribute category compared to the best performing system. Run 3 devel
shows our best results for the development set evaluated with the evaluation tool provided by the organizers.
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