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Abstract

We present ExB Themis – a word alignment-
based semantic textual similarity system de-
veloped for SemEval-2015 Task 2: Semantic
Textual Similarity. It combines both string and
semantic similarity measures as well as align-
ment features using Support Vector Regres-
sion. It occupies the first three places on Span-
ish data and additionally places second on En-
glish data. ExB Themis proved to be the best
multilingual system among all participants.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the degree of semantic equivalence of a
sentence pair and is applicable to problems in Ma-
chine Translation and Summarization among others
(Agirre et al., 2012). STS has drawn a lot of atten-
tion in the last few years leading to the availabil-
ity of multilingual training and test data and to the
development of a variety of approaches. These ap-
proaches fall broadly into three categories (Han et
al., 2013):

Vector space approaches: Texts are represented as
bag-of-words vectors and a vector similarity –
e. g. cosine – is used to compute a similarity
score between two texts (Meadow et al., 1992).

Alignment approaches: Words and phrases in two
texts are aligned and the quality or coverage of
the resulting alignments are used as similarity
measure (Mihalcea et al., 2006; Sultan et al.,
2014).

Machine Learning approaches: Multiple similar-
ity measures and features are combined using
supervised Machine Learning (ML). This ap-
proach relies on the availability of training data
(Bär et al., 2012; Šarić et al., 2012).

ExB Themis combines advantages of all three cat-
egories: we implemented a complex alignment al-
gorithm focusing on named entities, temporal ex-
pressions, measurement expressions and dedicated
negation handling. Unlike other alignment-based
approaches, we extract a variety of features to better
model the properties of alignments instead of pro-
viding only one alignment feature (see Section 4.1).

Moreover, we employ a variety of similarity mea-
sures based on strings and lexical items (see Sec-
tion 4.2). Our system integrates two well-known
language resources – WordNet1 and ConceptNet
(Speer and Havasi, 2012). Additionally, it uses word
embeddings to cope with data sparseness and the in-
sufficiency of overlaps between sentences.

Finally, we train a Support Vector Regression
(SVR) model using these features (see Section 5).

2 Preprocessing

Our text preprocessing comprises tokenization, case
correction (e. g. US Flying Surveillance Missions
to Help Find Kidnapped Nigerian Girls is corrected
to US flying surveillance missions to help find kid-
napped Nigerian girls), unsupervised part-of-speech
(POS) tagging based on SVD2 (Lamar et al., 2010),

1English: we use the one described by Miller (1995); Span-
ish: we use the one presented in (González-Agirre et al., 2012).
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supervised POS tagging using the Stanford Maxi-
mum Entropy tagger2 as well as lemmatization using
Stanford CoreNLP3 for English and IXA Pipes4 for
Spanish. We also identify measurements (e. g. 55.8
g/mol) and temporal expressions (e. g. last week),
data set-specific stop words (e. g. A close-up of for
images dataset) using in-house algorithms as well as
named entities as described by Hänig et al. (2014)
and their titles (e. g. President Barack Obama).

3 ExB Themis Alignment

Our word alignment is direction-dependent and not
restricted to one-to-one alignments. Different map-
ping types are distinguished and handled differently
during feature extraction (see Section 4.1). We use
the same type labels as provided by the organizers
for the third subtask (interpretable STS) of this task
(Agirre et al., 2015): EQUI denotes semantically
equivalent chunks, oppositional meaning is labeled
with OPPO, SPE1/2 denote similar meaning of the
chunks, but the chunk in sentence 1/2 is more spe-
cific than the other one. SIM and REL denote sim-
ilar and related meanings, respectively. ALIC is not
used, because our algorithm is not restricted to one-
to-one alignments. Finally, all unaligned chunks are
labeled with NOALI.

Similar to Sultan et al. (2014), our alignment pro-
cess follows a strict chronological order:

Named entities are aligned to each other. Because
we did not observe text pairs with possibly am-
biguous name alignments (e. g. Michael in one
text and both Michael Jackson and Michael
Schumacher in the other) in the training data,
we simply aligned all name pairs that share at
least one identical token.

Normalized temporal expressions are aligned iff
they denote the same point in time or the same
time interval (e. g. 14:03 and 2.03 pm).

Measurement expressions are aligned iff they ex-
press the same absolute value (e. g. $100k and
100.000$ ).

2nlp.stanford.edu/software/tagger.shtml
3nlp.stanford.edu/software/corenlp.shtml
4ixa2.si.ehu.es/ixa-pipes/

Arbitrary token sequence alignment consists of
multiple steps and is very time consuming5.
We apply a high precision test for identical se-
quences based on Sultan et al. (2014): Our
test uses synonym-lookups and ignores case in-
formation, punctuation characters and symbols.
This enables us to match expressions like long
term and long-term6. If one of both sequences
consists of exactly one all-caps-token then we
test if it is the acronym of the other sequence
(e. g. US and United States).

We used WordNet and ConceptNet7 to ob-
tain information about synonymy, antonymy
and hypernymy and equip the resulting align-
ments with the corresponding type. We ad-
ditionally created a small database containing
high-frequency synonyms (e. g. does and do),
antonyms (e. g. doesn’t and does) and nega-
tions (e. g. don’t, never, no).

Negations can significantly effect the semantic sim-
ilarity of two sentences (e. g. You are a Chris-
tian. vs. Therefore you are not a Christian.).
Therefore, we explicitly model negations in our
alignment. Some negations are handled dur-
ing arbitrary token sequence alignment. We
resolve the scope of all remaining negations
using co-occurrence analysis: if exactly one
of both neighboring tokens w1/2

n−1 and w1/2
n+1 is

already aligned then the negation w
1/2
n is at-

tached to it and we inverse the alignment type
(e. g. EQUI becomes OPPO and vice versa).
If both neighboring tokens are aligned then we
pick the one contained in the co-occurence out
of

〈
w

1/2
n−1, w

1/2
n

〉
and

〈
w

1/2
n , w

1/2
n+1

〉
yielding

the highest co-occurrence significance score.

Remaining content words are aligned using co-
sine similarity on word2vec vectors (Mikolov
et al., 2013). Analogously to Han et al. (2013),
we align each content word to the content word
of the other sentence with the same POS tag
that yields the highest similarity score. To
prevent weak alignments, we reject alignments
with a similarity less than 1/3.

5Therefore, we restrict ourselves to a maximum of 5 tokens.
6A similar method was described by Han et al. (2013).
7From ConceptNet we only imported synonyms.
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4 Feature Extraction

Some approaches to STS relying on word align-
ment are unsupervised and extract a defined score
based on the alignment process (e. g. proportions of
aligned content words (Sultan et al., 2014)), others
extract a single feature from the alignment and use it
along with other features to train a regression model
(e. g. align-and-penalize approach (Han et al., 2013;
Kashyap et al., 2014)).

Unlike these approaches, we extract 40 features
from our alignment (see Section 4.1) to (a) build a
complex model that is capable of modeling phenom-
ena like alignments of different types and negations,
and (b) not be forced to combine alignment proper-
ties arbitrarily.

We additionally extract 51 non-alignment features
(see Section 4.2) leading to a total of 91 features.

4.1 Alignment Features

To encode the properties of a set of alignments A of
sentences s1 and s2 as comprehensive as possible,
we extract the following features8:

Proportion features describe the ratio of aligned
words of a specified group with respect to all
words of that group (Sultan et al., 2014)9:

propgroup = 2 · prop1
group · prop2

group

prop1
group + prop2

group
with

prop
1/2
group = |{i:[∃j:(i,j)∈Agroup] and w

1/2
i ∈C}|

|{i:w1/2
i ∈C}|

where C is the set of all content words. We
extract these features for alignments of type
EQUI, OPPO, SPE1/2, REL10 and NOALI
(5 features).

Frequency features are encoded in binary format.

We encode frequencies of alignments of type
OPPO (3 features), SPE1/2 (3), REL (3) and
NOALI (5). We also encode the frequency of
unaligned negations with 3 features.

UMBC align-and-penalize features: We also in-
clude two features11 based on Han et al.

8Type-filtered subsets of A are denoted by Atype.
9See Sultan et al. (2014) for details on the formulae.

10Each content word is weighted by the similarity score
achieved by word2vec for this type.

11Splitting STS = T − P ′ into two features T and P ′

achieves better results than keeping it in the original form.

(2013): we use their T as it is and inte-
grated a simplified version of P ′ with PA

i =∑
〈t,g(t)〉∈Ai

(1+wp(t))

2 · |si| and PB
i = |〈t,g(t)〉∈Bi|

2 · |si|
(2 features).

All proportion features, binary frequency features of
REL-alignments, unaligned content words and un-
aligned negations were additionally computed and
extracted for nouns only (16 features).

4.2 Non-Alignment Features

We use a variety of non-alignment features:

UKP: We use several features described in Bär et al.
(2012): longest common substring (1 feature),
longest common subsequence (1), longest com-
mon subsequence with and without normaliza-
tion (2), greedy string tiling (1), character n-
grams for n = 2, 3, 4 with and without stop
words (6), word n-grams Jaccard coefficient for
n = 1, 2, 3, 4 (4), word n-grams Jaccard coeffi-
cient without stop words for n = 2, 4 (2), word
n-grams containment measure for n = 1, 2 (2)
as well as pairwise word similarity (1).

TakeLab: We use several features described in
Šarić et al. (2012)12: PathLen similarity (1 fea-
ture), corpus-based word similarity (3), vec-
tor space sentence similarity (1), n-gram over-
lap of tokens and lemmas for n = 1, 2, 3 (6),
weighted word overlap for lowercased tokens
and lemmas (2), normalized sentence length
difference (1), shallow named entity features
(4) and numbers overlap (3).

UMBC: We use several features described in Han
et al. (2013): word n-gram similarity for n =
1, 2, 3, 4 (4 features). Moreover, we used word
n-gram similarity for n = 1 where only nouns
or only verbs where taken into account (2).

Readability Indicators: We use several features
that are typically used as indicators for read-
ability (Oelke et al., 2012): relative difference
in sentence length, average word length in char-
acters, number of nouns per sentence, number
of verbs per sentence and noun-verb-ratio (5).

12takelab.fer.hr/sts/
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5 STS Model

We compute STS scores using ν-SVR (Schölkopf
et al., 2000) as implemented by LibSVM13. We use
LibSVM’s default SVR parameter settings without
further optimization.

6 Interpretable STS Model

We align chunks using our word alignment (see Sec-
tion 3). Because our word alignment itself does not
rely on chunks, we extend its alignments using given
chunk boundaries. If alignments overlap, we choose
the longest alignment and discard the others. We do
not differentiate between SIMI and REL – all REL
alignments are considered as SIMI alignments.

For chunking we use the OpenNLP14 chunker
with the default model trained on CoNLL-2000
shared task data (Sang and Buchholz, 2000).

7 Results

For English we train on all available data sets from
STS challenges in 2012 (Agirre et al., 2012), 2013
(Agirre et al., 2013) and 2014 (Agirre et al., 2014).
For Spanish, each run trains on a different setting.
Mean Pearson correlation is employed as an evalua-
tion metric.

7.1 Subtask 2a – STS English
Table 1 presents the official scores of our system.
Run default uses our system as it is. Run themis
only relies on alignment features in the belief model,
all other models are the same as for default. Our
third run – themisexp – is identical to run themis ex-
cept for one improvement: it penalizes scores of the
answers-students dataset exponentially to cope with
the high ratio of common content words that lead to
over-estimation of similarity scores.

7.2 Subtask 2b – STS Spanish
Table 2 presents the official scores of our system.
Run trainEs was trained on both Spanish test sets of
2014. Run trainEn was trained on all available En-
glish data sets. Run trainMini uses different training
sets for each test set: Wikipedia model was trained
on the 2014 Wikipedia test set and the Newswire
model was trained on the News test set of 2014.

13www.csie.ntu.edu.tw/˜cjlin/libsvm/
14opennlp.apache.org

Dataset default themis themisexp
forum 0.6946 (10) 0.6946 (10) 0.6946 (10)
students 0.7505 (11) 0.7505 (11) 0.7784 (6)
belief 0.7521 (3) 0.7482 (6) 0.7482 (6)
headlines 0.8245 (7) 0.8245 (7) 0.8245 (7)
images 0.8527 (12) 0.8527 (12) 0.8527 (12)
Mean 0.7878 (8) 0.7873 (9) 0.7942 (2)

Table 1: Results (rank) of our three runs on English data.

Dataset trainEs trainMini trainEn
Wikipedia 0.7055 (2) 0.7055 (1) 0.6763 (3)
Newswire 0.6830 (1) 0.6811 (2) 0.6705 (3)
Mean 0.6905 (1) 0.6893 (2) 0.6725 (3)

Table 2: Results (rank) of our three runs on Spanish data.

7.3 Subtask 2c – Interpretable STS
Our three runs only differ regarding the applied
alignment scorer method: we use the average simi-
larity score per alignment type as observed in STSint
training data, the most frequent similarity score per
alignment type as observed in STSint training data,
and an STS regression model per alignment type
trained on all available English STS data sets.

For subtrack gold chunks, our runs score 0.4885
to 0.4883 (F1 TYPE + SCORE) on headlines (ranks
10 - 12 out of 14) and 0.4296 to 0.4246 on images
(ranks 8 - 10). Using system chunks we achieve
scores of 0.4290 to 0.4284 on headlines (ranks 4–
6 out of 10) and 0.3870 to 0.3806 on images (ranks
4–6).

8 Conclusions & Future Work

We presented our alignment-based STS system ExB
Themis. Our system outperformed all other partic-
ipants by a large margin on Spanish data. Further-
more, our system placed second on English data.
ExB Themis proved to be the best multilingual STS
system that easily can be adapted to further lan-
guages. We conclude that extensive feature extrac-
tion from word alignments is a very robust approach
– especially when being applied to languages that
lack high-quality resources.

In future work, we will investigate the influence
of particular features in more detail and we want to
enrich our model with structural information (Sev-
eryn et al., 2013; Sultan et al., 2014) and improved
phrase similarity computation.
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