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Abstract

In Semantic Textual Similarity, systems rate
the degree of semantic equivalence on a
graded scale from O to 5, with 5 being the most
similar. For the English subtask, we present
a system which relies on several resources for
token-to-token and phrase-to-phrase similarity
to build a data-structure which holds all the in-
formation, and then combine the information
to get a similarity score. We also participated
in the pilot on Interpretable STS, where we ap-
ply a pipeline which first aligns tokens, then
chunks, and finally uses supervised systems to
label and score each chunk alignment.

1 Introduction

In Semantic Textual Similarity (STS), systems rate
the degree of semantic equivalence on a graded scale
from 0 to 5, with 5 being the most similar. We partic-
ipated in two of the subtask for STS in 2015 (Agirre
et al., 2015). For the English subtask, we present a
system which relies on several resources for token-
to-token and phrase-to-phrase similarity to build a
data-structure which holds all the information, and
then combine the information to get a similarity
score. We also participated in the pilot on Inter-
pretable STS, where we apply a pipeline which first
aligns tokens, then chunks, and finally uses super-
vised systems to label and score each chunk align-
ment.

Note that some of the authors participated in the
organization of the task. We scrupulously separated
the tasks in such a way that the developers of the
systems did not have access to the test sets, and that
they only had access to the same training data as the
rest of the participants.
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2  Cubes for English STS

In this section we describe a novel approach to com-
pute similarity scores between two sentences using
a cube where each layer contains token-to-token and
phrase-to-phrase similarity scores from a different
method and/or resource. Our assumption is that we
can obtain better results using this similarity scores
together than independently.

2.1 Building Cubes

The first step is to produce parse trees for the sen-
tences using the Stanford Parser (Toutanova et al.,
2003). After parsing the sentences each pair of sen-
tences can be represented by a NxM matrix, being N
is the number of nodes of the parse tree of the first
sentence, and M the number of nodes of the parse
tree of the second sentence. Note that some nodes
(terminals) correspond to words, while others (non-
terminals) represent phrases. We can have as many
matrices as we wish, and fill them with different sim-
ilarity scores, forming a cube.
In this first attempt we used three layers:

1. Euclidean distance between Collobert and We-
ston Word Vector (Collobert and Weston,
2008). The vector representations for each
non-terminal node in the tree were learnt us-
ing Recursive Autoencoder (RAE) (Socher et
al., 2011).

2. Euclidean distance between Mikolov Word
Vectors (Mikolov et al., 2013a; Mikolov et
al., 2013b). To compute the vector represen-
tations for each non-terminal node in the tree,
we summed the vectors and normalize them di-
viding by the number of words in the phrase.

3. PPDB Paraphrase database values (Ganitke-
vitch et al., 2013). We used the XXXL ver-
sion. In this case both words and some phrases
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are contained in the resource. This resource
yields conditional probabilities. As our scores
are undirected, in case the database contains
values for both directions, we average.

The first two produce a dense layer, where most
of the cells have a value. The third one produces a
sparse layer, where only the pairs occurring in the
resource have a value. Note that some of the phrases
in PPDB do not correspond to a node in the tree. In
this case, we add extra columns and rows.

2.2 Producing STS Score

Before computing a similarity score we flatten our
cube into a single layer, where each of the element
in the new NxM matrix is the maximum between
the values for that position across all the layers. We
do that because we studied the different resources
and we think that these resources have less False
Positives (FP) than False Negatives (FN). In other
words, if one of the resources says that something
is very similar we trust on it and take that similarity
score instead of the other (even if they are very low).
Moreover, our assumption is that the final similarity
score is specially based in similarities between to-
kens/phrases in the sentences, and not on dissimilar-
ities.

Once we have this matrix, we compute the final
STS score using the scoring function seen in (Mi-
halcea et al., 2006).

) 1 Zwesl (mazSim(weS2) * idf (w))
sim(S1,S2) = =
o) =3 < S wes, (W)
N <Zw652 (mazSim(we S1) * idf (w)) >
Zwesz /Ldf(w)
2.3 Results

Due to time constraints we submitted a single run,
which ranked 54 among 74 runs. We expect to im-
prove this results adding more layers and combining
them using more sophisticated aggregation methods.

3 Participating on the Interpretable STS
Pilot Subtask

The SemEval 2015 STS task offered a new pilot sub-
task on interpretable STS'. Given a sentence pair,

"http://alt.qgcri.org/semeval2015/task2/
index.php?id=proba
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the objective of the subtask is to align segments per-
taining to one sentence with the segments pertaining
to the other sentence. The whole subtask is in deep
described in (Agirre et al., 2015).

In sum, every alignment may consist of a similar-
ity score and a relatedness tag. The similarity score
is a real number bounded by [0,5] where O means
no relation at all and 5 means complete equivalence.
As regards the relatedness tag, there exists a set of
categorical values to choose on, such as: equiva-
lence, opposition, specialization (direction is rele-
vant), similarity and one more tag for other kind of
relatedness.

For the case of unaligned segments there are an-
other two possible categorical values. The one for
declaring segments unaligned (not aligned); and
the other to declare that the segment related to the
current segment has already been aligned (context
alignment). Notice that due to the limitations of
the current pilot the only way to align segments
is making 1:1 alignments. Thus, 1:N alignments
are simulated making an 1:1 alignment and sev-
eral context alignments. This concept is relevant
to the work done in section 3.1.2 when we extend
the Hungarian-Munkres (Clapper, 2009) algorithm
to identify already aligned chunks.

In addition, factuality or polarity connotations can
be added as requested to the previously mentioned
tags. Two different scenarios are provided in the pi-
lot subtask, the first one makes gold standard seg-
ments available for participants (Gold Chunks or GS
scenario); and, the second one, only provides sen-
tence raw text (System Chunks or SYS scenario).

In conclusion, the first pilot on interpretable STS
seems challenging because participating systems
must not only discover and score the relatedness be-
tween segments, but also identify the inner relation
between them.

3.1 System Description

This section describes the principal algorithm and
the distinct modules it uses, modules are further de-
scribed in the following subsections (3.1.1, 3.1.2,
3.1.3 and 3.1.4). System configurations (runs) used
to submit results are described in section 3.1.5.

The system makes use of several modules to
identify segments over sentence pairs, and then,
make alignments between them. First of all, the
input handling and chunking module is responsible



for linguistically processing the given input, and for
creating the internal representation of the sentences.
Once the input is processed the alignment module
identifies related and unrelated segments among sen-
tences. Finally, by using segment pair based fea-
tures the classification module and the scoring mod-
ule produce respectively the final relatedness tag and
the similarity score.

3.1.1 Input Handling and Chunking Module

We use the Stanford NLP parser (Klein and
Manning, 2003) to linguistically process input sen-
tences and register lowercased token information
(lemma, part of speech analysis and dependency
structure is also needed for the following module).
The next step consists of determining segments or
token regions. This information is gathered accord-
ing to the specified scenario (GS or SYS). In the case
of the GS scenario the baseline obviously uses gold
standard input; and, in the SYS scenario the baseline
uses the ixa-pipes-chunker (Agerri et al., 2014).

Ixa-pipes-chunk has been trained using the
Apache OpenNLP API (OpenNLP, 2011), which is a
maximum entropy chunker. Nevertheless, the chun-
ker’s output has been improved using simple regular
expressions to fit to our task proposal. Actually, we
developed four rules to optimize how conjunctions,
punctuations and prepositions are handled. In brief,
the developed rules try to join consequent chunks
forming new chunks consisting of the previous ones,
for instance, we found significant improvement if
prepositional phrases followed by a nominal phrase
were unified as a single chunk. We also developed
some rules to unify nominal phrases separated by
punctuations or conjunctions, or a combination of
those.

3.1.2 Alignment Module

The alignment module mainly focuses on the
work done by the monolingual word aligner de-
scribed in (Sultan et al., 2014), and Hungarian-
Munkres algorithm.

The monolingual word aligner is a simple and
ready-to-use system that has demonstrated state-of-
the-art performance. To begin with we start by con-
structing the foken to token link matrix in which each
element at position (i,j) determines that there exists
a link between token i (from sentence 1) and token j
(from sentence 2). A link exists in the matrix if and
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only if the monolingual word aligner has determined
that both tokens are related.

Then, the system uses token regions to group in-
dividual tokens into segments, and calculates the
weight between every segment in the sentence pair.
The weight among two segments is proportional to
the number of links that interconnect tokens inside
those segments. In other words, by summing regions
we collapse the token to token link matrix onto a
chunk to chunk link matrix. After that, we use the
mentioned Hungarian-Munkres algorithm to dis-
cover which are the segments (x,y) which score the
highest weight (link ratio); but also, we extend it to
discover which are the segments that are linked to
either segment x or segment y, but not with a max-
imum alignment ratio. This processing to find not-
maximal weights is essential to effectively assign the
context alignment tag for 1:N relations. In addition,
the system is also aware of chunks that have been
left unaligned.

3.1.3 Classification Module

The system can use one of the following ap-
proaches to assign relatedness tags to segment pairs:
the naive approach and the machine learning ap-
proach. The naive approach directly assigns the
tag as a majority classifier would do, that is: for
the segments with highest weight it always assigns
the equivalence tag, for the segments that are linked
with lower weights it always assigns the context
alignment tag, and for the not aligned segments it
always assigns the not aligned tag.

The machine learning approach makes use of
the segment-pair to calculate a total of 21 features
to improve the tag assignment. The objective of
the induced model is to refine the output given by
the naive approach only for segment pairs tagged as
equivalent. The features used to induce the model
can be classified in the following groups: Jaccard
overlap related features, segment length related fea-
tures, WordNet similarity related features among
segment heads, WordNet depth related features, and
other kind of features obtained by means of the cube
described in section 2.

To induce the model we use the Support Vec-
tor Machine (SVM) implementation described in
(Chang and Lin, 2011) under the latest experimental
version of Weka (Hall et al., 2009) using randomly
shuffled 5-fold cross validation. We indistinctly join



the available datasets and grid search to optimize the
cost and gamma parameters.

3.1.4 Scoring Module

To assign segment pair similarity scores the sys-
tem can also use two distinct approaches: the naive
approach and the cube based regression approach.
The naive scorer directly assigns a certain score to
each one of the tags, which has been previously as-
signed using the naive tagger: for equivalence tags it
assigns a score of 5 and for not aligned and context
aligned tags it assigns 'NIL’. (as requested by the
guidelines). The regression approach uses the cube
described in section 2 to improve the score given to
segment pairs tagged by the machine learning tag-
ger. Its returning value is used directly as the value
for the pair similarity score.

3.1.5 Submitted Runs

Even the subtask allows the submission of up to
three runs, we only submitted two distinct configu-
rations, named run/ and run2. runl and run2 are
mainly the same system, but runl makes use of the
naive approaches for both classification and scor-
ing tasks; whereas run2 makes use of the machine
learning approach for the tag assignment and the
cube based regression approach for the scoring as-
signment.

3.2 Result Analysis

Participating runs were evaluated using the official
scorer provided by task organizers, which computes
four distinct metrics: FI ALI (segment pair align-
ment correctness regardless of the tag), FI Type
(segment pair alignment correctness taking tag into
account), FI Score (segment pair alignment correct-
ness taking score into account) and F'/ Type + Score
(segment pair alignment correctness taking tag and
score into account).

3.2.1 Development

We developed two runs as above described using
the training data provided by task organizers. Train-
ing data consists of two datasets (images dataset and
headlines dataset) with 750 sentence pairs each. We
built and evaluated our system using 5-fold cross
validation and using a grid search optimization to
tune the SVM parameters. Results for both runs are
shown in table 1.
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IGS Ali Type | Score | Type + Score
Runl | 0.8942 | 0.5115 | 0.7776 0.5115
Run2 | 0.8942 | 0.7408 | 0.8175 0.6934
ISYS Ali Type | Score | Type + Score
Runl | 0.8379 | 0.4734 | 0.7271 0.4734
Run2 | 0.8379 | 0.6499 | 0.7627 0.6106
H GS Ali Type | Score | Type + Score
Runl | 0.8920 | 0.5740 | 0.7869 0.5738
Run2 | 0.8920 | 0.6908 | 0.8133 0.6544
H SYS Ali Type | Score | Type + Score
Runl | 0.7650 | 0.4808 | 0.6707 0.4808
Run2 | 0.7650 | 0.5210 | 0.6862 0.4902

Table 1: Development results for both datasets in the
two scenarios. "I’ stands for the images dataset, and "H’
stands for the headlines dataset.

The table shows that run2 outperforms runl in all
of the scenarios, which was expected as runl is us-
ing the naive approach for both: the relatedness tag
and the similarity score assignment. Notice that both
runs obtain the same F1 Alignment score as both
runs are using the same input handling and chunk-
ing module. Without the shadow of a doubt, we can
observe that for both datasets the F1 alignment is
noticeable higher in the GS scenario than in the SYS
scenario. Moreover, as evaluation measures are in-
cremental, F1 Type, F1 Score and F1 Type + Score
are also lower for the SYS scenario.

It is also important to mention that the difference
in performance (F Type+Score) between runl and
run2 is more noticeable in the images dataset, ac-
tually, for the headlines dataset in the SYS scenario,
the difference between both runs is under 0.01. This
difference increases up to 0.08 for the headlines
dataset in the GS scenario.

3.2.2 Test

The test dataset was composed of 378 sentence
pairs for the headlines dataset and of 375 sentence
pairs for the images dataset. Table 2 illustrates the
results obtained by runl and run2. The results ob-
tained for the test datasets follow in general the same
tendency as the one seen for the development. In
fact, run2 most of the times outperforms runl;
being this difference in performance more notice-
able in the images dataset than in the headlines
dataset. It might be necessary to further analyze the



I1GS Ali Type Score Type + Score
Baseline | 0.8388 | 0.4328 | 0.721 0.4326
Runl 0.8846 | 0.4749 | 0.7709 0.4746
Run2 0.8846 | 0.6557 | 0.8085 0.6159
MAX Par | 0.887 | 0.6143 | 0.7968 0.5964
AVG Par | 0.8193 | 0.5004 | 0.7197 0.4748
ISYS Ali Type Score Type + Score
Baseline | 0.706 | 0.3696 | 0.6092 | 0.3693
Runl 0.8388 | 0.445 | 0.728 0.4447
Run2 0.8388 | 0.6019 | 0.7634 | 0.5643
MAX Par | 0.8336 | 0.5759 | 0.7511 0.5634
AVGPar | 0.67 | 0.4086 | 0.5892 | 0.3912
H GS Ali Type | Score | Type+Score
Baseline | 0.8448 | 0.5556 | 0.7551 | 0.5556
Runl 0.8991 | 0.5882 | 0.8031 0.5882
Run2 0.8991 | 0.6402 | 0.8211 0.6185
MAX Par | 0.8984 | 0.6666 | 0.8263 0.6426
AVG Par | 0.8365 | 0.5576 | 0.7468 | 0.5381
HSYS Ali Type Score Type + Score
Baseline | 0.6701 | 0.4571 | 0.6066 | 0.4571
Runl 0.7709 | 0.5019 | 0.6892 | 0.5019
Run2 0.7709 | 0.4865 | 0.7014 0.4705
MAX Par | 0.782 | 0.5154 | 0.7024 0.5098
AVG Par | 0.6870 | 0.4498 | 0.6094 | 0.4335

Table 2: Test results for both datasets in the two scenar-
i0s. I’ stands for the images dataset, "H’ stands for the
headlines dataset and *Par’ stands for participants.

unique scenario in which runl obtains higher accu-
racy than run2 (Headlines SYS), but actually, results
have been also very close at development in this con-
text.

The baseline seems to be not that trivial as it
sometimes outperforms participants average perfor-
mance; but as we can see both of our runs obtain
higher accuracy than the baseline, in both cases by
large margin. For example, in the images dataset
the difference between the baseline and the second
run is 0.18 and 0.19 respectively for the GS and the
SYS scenario. Regarding other participants, we can
conclude that our runs obtain quite good results, spe-
cially for the images dataset where run2 obtains the
highest score.
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4 Conclusions and Future Work

Through this paper we have described the systems
that participated in the Semantic Textual Similarity
task 2A (English STS) and 2C (Interpretable STS).
Our main focus in the English subtask was on de-
ploying our idea of building a cube with similarity
information from several sources. We are currently
working on more layers, including Random Walks
over WordNet and Wikipedia, string similarity (Fer-
rone and Zanzotto, 2014), and also a special layer
to deal with numbers. Additionally, we are consid-
ering the idea of dissimilarity layers, for instance,
adding information about negation and antonymy.
We are also developing new methods to combine
these knowledge to generate the final STS score.

Regarding the interpretable STS system, this was
the first time a pilot was put in place. We obtained
excellent results, even if we had very little time to
develop the system. Future work will focus on fur-
ther improvements. For instance, our experiments
showed that grouping chunks lead to a considerable
improvement for the F1 Type evaluation score. We
would also like to incorparate factuality or polarity
information.

Although our original idea was to combine the
cube and the interpretable system, we did not have
time for that. In one direction, we would like to in-
corparate some of the semantic similarity informa-
tion in the cube into our system, including similarity
between chunks. On the other direction, the infor-
mation from the similarity module might be a good
feature to improve the overall STS score.
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