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Abstract
This  paper describes the USAAR-
SHEFFIELD systems that participated

in the Semantic Textual Similarity (STS)
English task of SemEval-2015. We extend the
work on using machine translation evaluation
metrics in the STS task. Different from
previous approaches, we regard the metrics’
robustness across different text types and
conflate the training data across different
subcorpora. In addition, we introduce a novel
deep regressor architecture and evaluated its
efficiency in the STS task.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the degree to which two text snippets
have the same meaning (Agitre et al., 2014). For
instance, given the two texts, ”a dog sprints across
the water” and "a dog jumps through water”, partic-
ipating systems are required to predict a real number
similarity score on a scale of 0 (no relation) to 5 (se-
mantic equivalence).

This paper presents a collaborative submission
between Saarland University and University of
Sheffield to the STS English shared task at SemEval-
2015. We have submitted three models that use Ma-
chine Translation (MT) evaluation metrics as fea-
tures to build supervised regressors that predict the
similarity scores for the STS task. We introduce two
variants of a novel deep regressor architecture and
a classical baseline regression system that uses MT
evaluation metrics as input features.
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2 Related Work

Previously, research teams have applied MT evalua-
tion metrics for the STS task with increasingly bet-
ter results (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014). Rios et al. (2012) trained a
Support Vector Regressor scoring a Pearson corre-
lation mean of 0.3825 (Baseline!: 0.4356). Barrén-
Cedefio et al. (2013) also used a Support Vector Re-
gressor and did better than the baseline at 0.4037
mean score (Baseline: 0.3639). Huang and Chang
(2014) used a linear regressor and scored 0.792 beat-
ing the baseline system (Baseline: 0.613).

Another notable mention of MT technology in the
STS task is the use of referential translation ma-
chines to predict and derive features instead of us-
ing MT evaluation metrics (Bigici and van Genabith,
2013; Bigici and Way, 2014).

These previous approaches have trained a differ-
ent system for each subcorpus provided by the task
organizers. We have chosen to combine the differ-
ent subcorpora since MT evaluation metrics are ex-
pected to be robust against text types and domains
(Han et al., 2012; Padé et al., 2009).

Much of the previous work on using MT evalu-
ation metrics is based on improving the regressors
through algorithm choice, feature selection and pa-
rameters tuning. We introduce a novel architecture
of hybrid supervised machine learning, Deep Re-
gression, which attempts to combine different re-
gressors and automating feature selection by means
of dimensionality reduction.

'Refers to the token cosine baseline
(baseline-tokencos) from the task organizers.
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3 Deep Regression Architecture

Ensemble learning constructs a set of models based
on different algorithms and then labels new data
points by taking a (weighted) vote from the algo-
rithms’ predictions (Dietterich, 2000). A typical sin-
gle layer feed-forward neural network creates a layer
of perceptrons that receives inputs and predicts a
series of outputs converted by means of an activa-
tion function and then the outputs will enter a final
layer of a single classifier to provide a final predic-
tion (Auer et al., 2008). We propose a deep regres-
sion architecture that is a unique way to combine
a single-layer feed-forward neural net architecture
with ensemble-like supervised learning.

Hidden Regressors
[ Latent Layer

Last
Regressor

Input

Output

Figure 1: Deep Regression Architecture.

Figure 1 presents the Deep Regression architec-
ture where the inputs are fed into the different hid-
den regressors and unlike traditional neural network,
each regressor produces a discrete output with a dif-
ferent cost function unlike the consistent activation
function in neural nets. Different from ensemble
learning, the voting/selection determinant has been
replaced by a last layer of a single regressor that
takes latent layer as input to produce the final out-
put STS score.

By designing the architecture in this way, the fea-
ture space from the input is reduced to the number
of hidden regressors and the input for the last layer
regressors is a latent layer in the higher dimensional
space. Within a standard neural net, every node in
the latent layer is influenced by all the perceptrons
in the previous layer. In contrast, each latent dimen-
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sion is only dependent on one regressor; in this re-
spect it resembles ensemble learning where the re-
gressors/classifiers are trained independently.

4 Feature Matrix

Machine Translation evaluation metrics consider
varying degrees of information at the lexical, syn-
tactic and semantic levels. Each metric comprises
several features that compute the translation quality
by comparing every translation against one or sev-
eral reference translations. We consider three sets
of features: n-gram overlaps, Shallow Parsing met-
rics and METEOR. These metrics correspond to the
lexical, syntactic and semantic levels respectively.

4.1 N-gram Overlaps

Gonzalez et al. (2014) reintroduces the notion of lan-
guage independent metrics relying on n-gram over-
laps. This is similar to the BLEU metric that cal-
culates the geometric mean of n-gram precision by
comparing the translation against its reference(s)
(Papineni et al., 2002) without the brevity penalty.

Different from BLEU, the n-gram overlaps are
computed as similarity coefficients instead of taking
the crude proportion of overlap n-gram.

n _gramoverlap = stm (n -graly,.qng nn _gramref)

We use 16 features of n-gram overlap by consid-
ering both the cosine similarity and Jaccard Index in
calculating the n-gram overlaps for character and to-
ken n-gram from the order of bigrams to 5-grams. In
addition, we use the ratio of n-gram lengths and the
Jaccard similarity of pseudo-cognates (Simard et al.,
1992) as the 17th and 18th n-gram overlap features.

4.2 Shallow Parsing

The Shallow Parsing (SP) metric measures the syn-
tactic similarities by computing the overlaps be-
tween the translation and the reference translation at
the Parts-Of-Speech (POS), word lemmas and base
phrase chunks level. The purpose of the SP metric
is to capture the proportion of lexical items correctly
translated according to their shallow syntactic real-
ization.

The base phrase chunks are tagged using the
BIOS toolkit (Surdeanu et al., 2005) and POS tag-



ging and lemmatization are achieved using SVM-
Tool (Giménez and Marquez, 2004). For in-
stance, given a pair of sentences in the format
(word/POS/lemma/chunk):

e NP(a/DT/a/B-NP dog/NN/dog/1-NP)
sprints/NBZ/sprint/B-VP across/IN/across/O
NP(the/DET/the/B-NP water/NN/water/I-NP)

e NP(a/DT/a/B-NP dog/NN/dog/I-NP)
Jjumps/NBZ/jump/B-VP through/IN/through/O
water/NN/water/B-NP

We consider the overlap proportions for the POS
features, lemma, IOB features, shallow chunks. The
Inside, Outside, Begin (IOB) features refer to the
shallow parsing tags at the lexical level, e.g. B—NP
represents the beginning of a noun phrase (Sang et
al., 2000). The IOB features are measured lexi-
cally by considering each IOB tag while the shallow
chunk features only consider the number of brack-
eted chunks.

For instance, the POS tag DT occurs twice in first
sentence one and once in second sentence, thus we
extract the feature SP-POS(DT) =1/2=0.5.

e SP-POS (DT,NN,VBZ,IN) =[0.5,1,1,1]

e SP-LEMMA (a,dog,jump,through,water) =
[1,1,0,0,1]

e SP-IOB (B-NPI-NP,B-VP,O) =]1,1,-0.5,1,1]

e SP-CHUNK (NP) =[0.5]

For SP-P0OS, SP-LEMMA and SP-IOB, we use
the NIST-like measure where we not only con-
sider the individual POS, LEMMA or IOB tags but
an accumulated score over a sequence of 1-5 n-
grams, e.g. SP-POS (DT+NN,DT+NN+VBZ, ...)
or SP-LEMMA (a+dog,a+dog+jump, ...) .

5 METEOR

METEOR aligns the translation to a reference trans-
lation first then it uses unigram mapping to match
words at their surface forms, word stems, syn-
onym matches and paraphrase matches (Banerjee
and Lavie, 2005; Denkowski and Lavie, 2010).
Different from the n-gram and shallow parsing
features, METEOR makes a distinction between
content words and function words and the precision
and recall is measured by weighing them differently.
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It also accounts for word order differences by penal-
izing chunks from the translation that do not appear
in the translation.

We use the METEOR 1.5 system with tuned
weights and penalty using the WMTI12 data. For
the STS experiment, we use all four variants of
METEOR: exact matches, stem matches, synonym
matches and paraphrase matches.

6 Experiments and Results

6.1 Training Data

We conflated all training and test data of vari-
ous text types from previous SemEval STS shared
tasks into a single training set with 10597 para-
graph/sentence/caption pairs. The MT metrics for
each text pair were computed with the Asiya toolkit
(Giménez and Marquez, 2010). Tokenization and
preprocessing operations, such as lemmatization,
POS tagging, parsing and n-gram extraction, are per-
formed by the Asiya toolkit.

6.2 Models

We submitted three models to the SemEval-2015
STS English Task:

e ModelX: Deep Regression framework with the
full feature set from n-gram overlaps, Shallow
Parsing and METEOR.

e ModelY: Bayesian Ridge Regressor with the
full feature set

e ModelZ: Deep Regression framework with
only METEOR features

For the hidden regressors layer of the deep regres-
sion models, we have used the multivariate linear,
logistic, Bayesian ridge, elastic net, random sam-
ple consensus and support vector (radial basis func-
tion kernel) regressors.”> The final layer regressor
is a Bayesian ridge regressor. These supervised re-
gressors are implemented in scikit-learn (Pe-
dregosa et al., 2011).

No comprehensive parameter tuning was  at-
tempted on the models and the default parameters for
each regressor can be found on our code repository,
https://github.com/alvations/USAAR-SemEval-2015.



Ans-Forums Ans-Student

Belief Headlines

Images | Mean Rank

ModelX 0.3706 0.3609 04767  0.5183 0.5436 | 0.4616 68
ModelY 0.6264 0.7386 0.705 0.7927  0.8162 | 0.7275 21
ModelZ 0.4237 0.6757 0.6994  0.5239  0.6833 | 0.6111 58

Table 1: Spearman’s Results for STS English Task @ SemEval-2015.

6.3 Results

Table 1 presents the official results for the En-
glish STS task where our baseline model (Mode1Y)
strikingly outperforms the deep regressor models
(ModelX and Model7).

Our baseline model achieved modest results rank-
ing 24 out of 73 submissions, however our deep re-
gressors have failed to function on par with a sim-
ple baseline regressor. We note that the deep regres-
sor with the full feature set (Mode1X) scored lower
than the deep regressor with only the METEOR fea-
tures (Mode17). This reiterates the effectiveness of
semantically motivated METEOR features in deter-
mining similarity as previously indicated by Huang
and Chang (2014).

Ans-forums
Images Ans-students
——ModelY (#24)
-=-TokenCos (#57)
- DLSCU (#1)
Headlines 'Belief

Figure 2: Comparison of Results with Best and Baseline
Systems

Interestingly, the conflation of datasets has no
obvious detrimental effects on the performance for
any specific domains. Figure 2 presents a com-
parison of results between ModelY, the top sys-
tem from DLSU and the organizers’ baseline sys-
tem (TokenCos). It shows that the distribution
of Spearman’s correlation for our model is as well-
balanced as the best system.
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7 Conclusion

In this paper, we have described our submissions
to the STS English task for SemEval-2015. We
have introduced a novel deep regression infrastruc-
ture with MT evaluation metrics to measure seman-
tic similarity. Although our deep regressors per-
formed poorly, our baseline system have achieved
promising results amongst the participating systems
and we showed that conflating datasets of different
genres has negligible effects on a semantic similarity
system based on MT evaluation metrics.

The results also confirm the good performance of
METEOR, a traditional MT evaluation metric, for
the STS task.
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