
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 51–55,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

Ebiquity: Paraphrase and Semantic

Similarity in Twitter using Skipgram

Taneeya Satyapanich, Hang Gao and Tim Finin
University of Maryland, Baltimore County

Baltimore, MD, 21250, USA
taneeya1@umbc.edu, hanggao1@umbc.edu, finin@umbc.edu

Abstract

We describe the system we developed to partic-

ipate in SemEval 2015 Task 1, Paraphrase and

Semantic Similarity in Twitter. We create simi-

larity vectors from two-skip trigrams of prepro-

cessed tweets and measure their semantic simi-

larity using our UMBC-STS system. We sub-

mit two runs. The best result is ranked eleventh

out of eighteen teams with F1 score of 0.599.

1. Introduction

In this task (Wei, et al., 2015), participants were

given pairs of text sequences from Twitter trends

and produced a binary judgment for each stating

whether or not they are paraphrases (e.g., semanti-

cally the same) and optionally a graded score (0.0

to 1.0) measuring their degree of semantic equiva-

lence. For example, for the trending topic “A Walk

to Remember” (a film released in 2002), the pair A

Walk to Remember is the definition of true love”

and “A Walk to Remember is on and Im in town

and Im upset” might be judged as not paraphrases

with score 0.2 whereas the pair “A Walk to Re-

member is the definition of true love” and “A Walk

to Remember is the cutest thing” could be judged

as paraphrases with a score of 0.6.

Many methods have been proposed to solve the

paraphrase detection problem. Early approaches

were often based on lexical matching techniques,

e.g., word n-gram overlap (Barzilay and Lee,

2003) or predicate argument tuple matching (Qiu,

et al., 2006). Some other approaches that go be-

yond simple lexical matching have also been de-

veloped. For example, (Mihalcea, et al., 2006) es-

timated semantic similarity of sentence pairs with

word-to-word similarity measures and a word

specificity measure. (Zhang and Patrick, 2005)

uses text canonicalization to transfer texts of simi-

lar meaning into the same surface text with a high-

er probability than those with different meaning.

Many of these approaches adopt distributional

semantic models, but limited to a word level. To

extend distributional semantic models beyond

words, several researchers have learned phrase or

sentence representation by composing the repre-

sentation of individual words (Mitchell and Lapata,

2010; Baroni and Zamparelli, 2010). An alternative

approach by (Socher et al., 2011) represents

phrases and sentences with fixed matrices consist-

ing of pooled word and phrase pairwise similari-

ties. (Le and Mikolov, 2014) learns representation

of sentences directly by predicting context without

composition of words.

In our work, we judge that two sentences are

paraphrases if they have high degree of semantic

similarity. We use the UMBC-Semantic Textual

Similarity system (Lushan Han et al., 2013), which

provides high accurate semantic similarity meas-

urement. The remainder of this paper is organized

as follows. Section 2 describes the task and the

details of our method. Section 3 presents our re-

51

sults and a brief discussion. The last section offers

conclusions.

2. Our Method

To decide whether two tweets are paraphrases or

not, we use a measurement based on semantic sim-

ilarity values. If two tweets are semantically simi-

lar, they are judged as paraphrases, otherwise they

are not. We described steps of our method as fol-

lows.

1.1. Preprocessing

Generally, tweets are informal text sequences that

include abbreviations, neologisms, emoticons and

slang terms as well genre-specific elements such as

hashtags, URLs and @mentions of other Twitter

accounts. This is due to both the informal nature

of the medium and the requirement to limit content

to at most 140 characters. Thus, before measuring

the semantic similarity, we replace abbreviation

and slang to the readable version. We collected

about 685 popular abbreviations and slang terms

from several Web resources
1
 and combined these

with the provided twitter normalization lexicon

developed by Han Bo and Timothy Baldwin

(2011).

After replacing abbreviations and slang terms,

we remove all stop words to get our final desired

processed tweets. Then we produce a set of two-

skip trigrams for each tweet and name these sets as

trigram sets. We adapted the skip-gram technique

from (Guthrie, et al., 2006).

Take the tweet “Google Now for iOS simply

beautiful” as an example, after removing stop word

s, we get ‘Google Now iOS simply beautiful’. Then

a two-skip trigram set is produced: {‘Google Now

iOS’, ‘Now iOS simply’, ‘iOS simply beautiful’,

‘Google iOS simply’, ‘Google simply beautiful’,

‘Now simply beautiful’, ‘Google Now beautiful’,

‘Google Now simply’, ‘Now iOS beautiful’}, which

is referred as trigram set. We transform every raw

tweet into its processed version and then corre-

sponding trigram set.

1 These included http://webopedia.com, http://blog.-

mltcreative.com and http://internetslang.com and others.

1.2. LSA Word Similarity Model

Our LSA word similarity model is a revised ver-

sion of the one we used in the 2013 and 2014

SemEval semantic text similarity tasks (Han, et al.,

2013, Kashyap et al., 2014). LSA relies on the fact

that semantically similar words (e.g., cat and feline

or nurse and doctor) are more likely to occur near

one another in text. Thus evidence for word simi-

larity can be computed from a statistical analysis of

a large text corpus. We extract raw word co-

occurrence statistics from a portion of a 2007 Stan-

ford WebBase dataset (Stanford, 2001).

We performed part of speech tagging and lem-

matization on the corpus using the Stanford POS

tagger (Toutanova et al., 2000). Word/term co-

occurrences were counted with a sliding window

of fixed size over the entire corpus. We generate

two co-occurrence models using window sizes ±1

and ±4. The smaller window provides more precise

context which is better for comparing words of the

same part of speech while the larger one is more

suitable for computing the semantic similarity be-

tween words of different syntactic categories.

Our word co-occurrence models are based on a

predefined vocabulary of 22,000 common English

open-class words and noun phrases, extended with

about 2,000 verb phrases from WordNet. The final

dimensions of our word/phrase co-occurrence ma-

trices are 29,000×29,000 when words/phrases are

POS tagged. We apply singular value decomposi-

tion on the word/phrase co-occurrence matrices

(Burgess 1998) after transforming the raw

word/phrase co-occurrence counts into their log

frequencies, and select the 300 largest singular

values. The LSA similarity between two

words/phrases is then defined as the cosine similar-

ity of their corresponding LSA vectors generated

by the SVD transformation.

To compute the semantic similarity of two text

sequences, we use the simple align-and-penalize

algorithm described in (Han et al., 2013) with a

few improvements. These improvements include

some sets of common disjoint concepts and an en-

hanced stop word list.

1.3. Features

For two trigram sets, we compute the semantic

similarity of every possible pair of trigrams in the-

se two sets using the UMBC Semantic Textual

52

Similarity system. For each pair of tweet (T1 and

T2), six features are produced as:

• Feature1 = semantic similarity value between

each pair of tweets (whole sentence with ab-

breviation and slangs replaced, and stop words

removed)

• Feature2 =

• Feature3 =

• Feature4 =

• Feature5 =

• Feature6 = the weighted average on length of

tweets of two averages above.

1.5. Training

We used the LIBSVM system (Chang and Lin,

2011) for training a logistic regression model and a

support vector regression model. We run a grid

search to find the best parameters for both models.

All training data (13,063 pairs of tweets) were used

to train the models without discarding any debata-

ble data. We tested the contribution for of each of

the features through ablation experiments on the

development data in which each feature was delet-

ed in each experimental run. Table 1 shows the

statistical results for each feature ablation run.

Feature deleted F1 Precision Recall

Feature 1 0.7 0.709 0.728

Feature 2 0.697 0.706 0.726

Feature 3 0.697 0.706 0.726

Feature 4 0.691 0.700 0.722

Feature 5 0.696 0.706 0.726

Feature 6 0.695 0.705 0.725

Table 1. Performance of our system on runs against the

development data in which each feature was removed.

From Table 1, we can see that the feature of lowest

performance is Feature 1, the semantic similarity

computed with entire tweets without using the

skip-gram technique. But we still keep Feature 1

since performance of these six features is not sig-

nificantly different. We show the performance of

each model on development data in Table 2.

Model F1 Precision Recall

Logistic

Regression
0.697 0.706 0.726

Support Vector

Regression 0.691 0.707 0.726

Table 2. Performance of system on development data.

Since the performance of both systems is almost

the same, we decide to submit one run of each sys-

tem.

3. Results and Discussions

We submit two runs: Run1 (Logistic Regression)

obtained an F1 score of 0.599, precision score of

0.651 and recall score of 0.554, and Run2 (Support

Vector Regression), which received an F1 of

0.590, precision of 0.646, and recall of 0.543.

When ranked, we are in the eighteenth (Run1) and

the nineteenth (Run2) out of the 38 runs. The first

rank has F1 score of 0.674. The full distribution of

F1 score is shown in Figure 1. The relatively low

ranking of our system might be the result of sever-

al factors.

First factor is the prevalence of neologisms,

misspellings, informal slang and abbreviations in

tweets. Better preprocessing to make the tweets

closer to normal text might improve our results.

 Another factor is the UMBC STS system. Ex-

amples of input on which UMBC STS system per-

form poorly are shown in Table 3. We can group

these into two sets, each associated with problem

in performing the paraphrase task.

The first problem is that a slang word may have

different meanings when it is used in different gen-

res. As we can see in the first example in Table 3,

‘bombs’ does not mean ‘a container filled with

explosive’ but is a synonym of ‘home runs’ when

mentioned in a sports or baseball context. We can

recognize this meaning by reading sport articles

but it is not included in any dictionaries or

WordNet. Thus our system predicts that the two

tweets, each containing either ‘bombs’ or ‘home

runs’, have low semantic similarity and thus are

not paraphrases.

The second problem involves out-of-vocabulary

words, such as the named entities found in the ex-

amples in Table 3. Tweet 2 of the second example

53

‘NOW YOU SEE ME and AFTER EARTH Cant

Outpace FAST FURIOUS 6’ is full of movie

names whose meanings our STS system cannot

recognize. We can solve this problem by adding

name entity recognition to the system. Another

potential solution would be to adopt a simple

string-matching component. With string matching,

we may handle those out-of-vocabulary words sit-

uations similar to the third and fourth example. We

can match ‘orr’ and ‘chara’ between two tweets of

the third example and ‘new ciroc’ in the fourth ex-

ample.

To improve our STS performance, which is

trained on a corpus that mostly consisted of rea-

sonably well-written narrative text, we need to ex-

pand training corpus. Training a LSA model on a

collection of tweets or a mixture of tweets and nar-

rative text, and adding name entity recognition

process may lead to better results.

Figure 1. Ranked F1 score of 38 runs

Tweet 1 Tweet 2 System Gold

1 chris davis is 44 with two bombs Chris Davis has 2 home runs tonight False True

2 I wanna see the movie after earth
NOW YOU SEE ME and AFTER EARTH

Cant Outpace FAST FURIOUS 6
True False

3 Orr with a big hit on Chara I keep waiting for the chara vs orr fight False True

4 New Ciroc Amaretto I NEED THAT Oh shit I gotta try that new ciroc flavor False True

Table 3. Examples of input pairs on which our system performed poorly

4. Conclusion

We describe our system submitted in participating

the SemEval 2015 Task 1 Paraphrase and Seman-

tic Similarity in Twitter. We preprocess tweets us-

ing two-skip trigrams to produce sets of possible

trigrams and measure their semantic similarity us-

ing the UMBC-STS system. We computed the sta-

tistical value as maximum and average of each pair

and use two regression models; logistic regression

and support vector regression. Our best performing

run achieved an F1 score of 0.599 and was ranked

eleventh out of eighteen teams.

Acknowledgments

Partial support for this research was provided by

grants from the National Science Foundation

(1228198 and 1250627) and a grant from the Mar-

yland Industrial Partnerships program.

54

References

Marco Baroni and Roberto Zamparelli. 2010. Nouns are

vectors, adjectives are matrices: Representing adjec-

tive-noun constructions in semantic space. In Pro-

ceedings of the 2010 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2010).

Regina Barzilay and Lillian Lee. 2003. Learning to

paraphrase: An unsupervised approach using multi-

ple-sequence alignment. In Proceedings of Confer-

ence of the North American Chapter of the Associa-

tion for Computational Linguistics – Human Lan-

guage Technologies(HLT-NAACL)

William Blacoe. and Mirella Lapata 2012. A compari-

son of vector-based representations for semantic

composition, Proceedings of EMNLP, Jeju Island,

Korea, pp. 546-556.

Han, Bo, and Timothy Baldwin. 2011. Lexical normali-

sation of short text messages: Makn sens a# twitter.

Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Lan-

guage Technologies-Volume 1. Association for

Computational Linguistics, 2011.

Curt Burgessa, Kay Livesayb and Kevin Lundb 1998.

Explorations in context space: Words, sentences, dis-

course. Discourse Processes, 25:211–257.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM :

a library for support vector machines. ACM Transac-

tions on Intelligent Systems and Technology, 2:27:1-

-27:27, 2011.

David Guthrie, Ben Allison, Wei Liu, Louise Guthrie,

Yorick Wilks. 2006. "A closer look at skip-gram

modelling." In Proceedings of the 5th international

Conference on Language Resources and Evaluation

(LREC-2006), pp. 1-4. 2006.

Lushan Han, Tim Finin, Paul McNamee, Anupam Joshi

and Yelena Yesha, Improving Word Similarity by

Augmenting PMI with Estimates of Word Polysemy,

IEEE Transactions on Knowledge and Data Engi-

neering, IEEE Computer Society, v25n6, pp. 1307-

1322, 2013.

Lushan Han, Abhay L. Kashyap, Tim Finin, James

Mayfield, and Johnathan Weese. 2013. UMBC

EBIQUITY-CORE: Semantic Textual Similarity

Systems, In Second Joint Conf. on Lexical and Com-

putational Semantics. Association for Computational

Linguistics , June.

Lushan Han, Schema Free Querying of Semantic Data,

Ph.D. Dissertation, University of Maryland, Balti-

more County, August 2014.

Abhay Kashyap, Lushan Han, Roberto Yus, Jennifer

Sleeman, Taneeya Satyapanich, Sunil Gandhi and

Tim Finin. 2014. Meerkat Mafia: Multilingual and

Cross-Level Semantic Textual Similarity Systems,

Int. Workshop on Semantic Evaluation, Association

for Computational Linguistics.

Rada Mihalcea, Courtney Corley and Carlo Strapparava.

2006. Corpus-based and knowledge-based measures

of text semantic similarity, Proceedings of the Na-

tional Conference on Artificial Intelligence (AAAI

2006), Boston, Massachusetts, pp. 775-780

Jeff Mitchell and Mirella Lapata. 2010. Composition in

distributional models of semantics. Cognitive Sci-

ence, 34(8).

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006.

Paraphrase recognition via dissimilarity significance

classification. In Proceedings of the 2006 Conference

on Empirical Methods in Natural Language Pro-

cessing, pages 18–26, Sydney, Australia, July. Asso-

ciation for Computational Linguistics.

Le, Quoc V., and Tomas Mikolov. "Distributed repre-

sentations of sentences and documents." arXiv pre-

print arXiv:1405.4053 (2014).

Richard Socher, Eric H. Huang, Jeffrey Pennington,

Andrew Y. Ng, and Christopher D. Manning. 2011.

Dynamic pooling and unfolding recursive

autoencoders for paraphrase detection. In Advances

in Neural Information Processing Systems (NIPS

2011).

Stanford. 2001. Stanford WebBase project.

http://bit.ly/WebBase.

Kristina Toutanova, Dan Klein, Christopher Manning,

William Morgan, Anna Rafferty, and Michel Galley.

2000. Stanford log-linear part-of-speech tagger.

http://nlp.stanford.edu/software/tagger.shtml.

Wei Xu, Chris Callison-Burch and William B. Dolan.

2015. SemEval-2015 Task 1: Paraphrase and Seman-

tic Similarity in Twitter ,Proceedings of the 9th In-

ternational Workshop on Semantic Evaluation

(SemEval),2015.

Yitao Zhang and Jon Patrick. 2005. Paraphrase identifi-

cation by text canonicalization. In Proceedings of the

Australasian Language Technology Workshop 2005,

pages 160–166, Sydney, Australia, December.

55

