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Abstract

We explore using recursive autoencoders for
SemEval 2015 Task 1: Paraphrase and Seman-
tic Similarity in Twitter. Our paraphrase de-
tection system makes use of phrase-structure
parse tree embeddings that are then provided
as input to a conventional supervised classi-
fication model. We achieve an F1 score of
0.45 on paraphrase identification and a Pear-
son correlation of 0.303 on computing seman-
tic similarity.

1 Introduction

The process of rewriting text with a different choice
of words or using a different sentence structure
while preserving meaning is called paraphrasing.
Identifying paraphrases can be a difficult task owing
to the fact that evaluating surface level similarity is
often not enough, but rather systems must take into
account the underlying semantics of the content be-
ing assessed.

Paraphrasing and paraphrase detection are impor-
tant and challenging tasks, which find their applica-
tion in various subfields of Natural Language Pro-
cessing (NLP) such as information retrieval, ques-
tion answering (Erwin and Emiel, 2005), plagiarism
detection (Paul Clough et al., 2002), text summa-
rization and evaluation of machine translation (Chris
Callison Burch, 2008).

We explore using recursive autoencoders for para-
phrase detection and similarity scoring as a part of
SemEval 2015 Task 1: Paraphrase and Semantic
Similarity in Twitter. Twitter is an online social net-
working service with millions of users who casually
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converse about diverse topics in a continuous and
contemporaneous manner (Wei Xu et al., 2014; Wei
Xu et al., 2015). Table 1 gives an example of real
tweets, some of which are paraphrases of each other.
The very casual style of the Twitter corpus makes it
more challenging to work with for many NLP tools.
We use vector space embeddings, in part, since they
are relatively good at dealing with noisy data.

2 Related Work

Socher et al. (2011) explored using recursive au-
toencoders (RAEs) and dynamic pooling for para-
phrase detection. They parse each sentence within a
pair, compute embeddings for each node in the parse
trees, and then construct a similarity matrix compar-
ing the embedding vectors for all nodes within the
two parse trees. Using dynamic pooling, they con-
vert the variable size similarity matrix for each sen-
tence pair to a matrix of fixed size. The resulting
fixed size matrix is then given to a softmax classifier
to detect whether the sentences are paraphrases.

3 A Deep Learning System

The architecture of our system is depicted in Figure
1. The raw Twitter corpus is preprocessed using a
phrase-structure parser. The resulting parse trees are
then used to train an unfolding RAE model. This
model provides us with embedding vectors that are
then used to compute the similarity between every
node in the parse trees associated with a sentence
pair. A similarity matrix is populated with the node-
to-node similarity scores as measured by the Eu-
clidean distance beween the node embedding vec-
tors. The size of the similarity matrix depends on
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Sentence 1 Sentence 2 Paraphrase or Not
AAP is in the Adidas commercial AAP in that Adidas Commercial lol | Paraphrase
That amber alert was getting annoying | Why do I get amber alerts tho Not paraphrase
I am so watching Cinderella right now | Im so watching Cinderella right now | Paraphrase
That shot counted by Bayless Bayless just RAN for it Not Paraphrase
Damon EJ 1st Qb off the board if EJ is the 1st QB off the board Paraphrase

Table 1: Sample tweets from SemEval 2015 Twitter Paraphrase Corpus.
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Figure 1: System architecture: The unfolding recursive autoencoder computes phrase embedding vectors for each
node in a parse tree. For a pair of sentences being evaluated, the distances between all the nodes in the paired parse
trees are computed and fill a variable sized similarity matrix. Dynamic pooling is used to convert the variable size
similarity matrix to fixed size matrix. The fixed size similarity matrix is given to a softmax classifier to detect both
whether the paired sentences are paraphrases and for paraphrase similarity scoring.
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Figure 2: Dynamic pooling: The original variable sized
matrix is partitioned into an n,, X n, grid of blocks of ap-
proximately equivalent size. We use min-pooling as the
aggregation operation, whereby the values of the cells in
the fixed size n, X n, matrix are assigned to the mini-
mum value of the corresponding partition in the original
matrix.

the number of nodes in the parse trees being com-
pared. This variable size similarity matrix is con-
verted to a fixed size matrix using Dynamic Pooling
(Socher et.al, 2011). Dynamic pooling partitions the
rows and columns of similarity matrix into n, ap-
proximately equivalent segments which creates an
np X ny grid. As depicted in Figure 2, the individ-
ual cells in the fixed size n, X m, matrix are assign
to the minimum values of their corresponding par-
titions in the original matrix. The resulting fixed
size matrix is then used to train a softmax classifier
to perform the actual paraphrase detection and pair-
wise similarity scoring tasks. To classify a pair of
new sentences, the sentences are first parsed. Using
the parse trees, the embedding vectors for each sen-
tence are constructed and used to populate a node-
to-node similarity matrix. This matrix is converted
to a fixed size using dynamic pooling and passed to
the softmax classification model.

3.1 Unfolding Recursive Autoencoders (RAEs)

The architecture of our unfolding RAE:s is illustrated
in Figure 2. The main difference between standard
RAEs and unfolding RAEs is that standard RAEs
are only directly trained to have each node recon-
struct its immediate children. Unfolding RAEs dif-
fer in that the training objective assess not only how
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Figure 3: Architecture of unfolding RAEs. Using unfold-
ing RAEs, the embedding vector associated with each
node in a parse tree is trained to reconstruct the whole
parse tree fragment rooted at the current node.

well the representation of each node reconstructs it’s
immediate children, but rather how well the node’s
representation reconstructs the entire parse tree frag-
ment rooted at the current node.

4 Experimental Results

We use a general domain parsing model distributed
with the Stanford Parser, englishPCFG v1.6.9 (Klein
and Manning, 2003). Prior to training the RAE vec-
tors, we pre-trained word embedding vectors for use
as the word level representations (Ronan and Jason,
2008). The hyperparameter values used for our sys-
tem are as follows: (1) the size of the pooling matrix
ny = 13; (2) the regularization for the softmax clas-
sifier ¢ = 0.05; (3) Both the RAE and word embed-
dings are 100-dimensional vectors.

4.1 Data Set Details

Our SemEval task provided the PIT-2015 Twitter
Paraphrase corpus for training and system develop-
ment (Wei Xu, 2014; Wei Xu et al., 2014; Wei Xu
et al., 2015). The corpus contains a training set with
13,063 sentence pairs, a development set with 4,727
sentence pairs, and a test set with 972 sentence pairs.
Table 2 shows the label distribution statistics for this
corpus. This data set is distinct from the data used



Category Paraphrase | Non-Paraphrase Debatable Total
Sentence pair | Sentence pair | Sentence pair
Training 3,996 7,534 1,533 13,063
Development | 1,470 2,672 585 4,727
Testing 175 663 134 972
Table 2: Statistics of PIT-2015 Twitter Paraphrase Corpus.
Twitter | Training Testing/ Precision | Recall F1
Corpus Development Measure
50,000 13,063 4,727 0.51 0.48 0.49
80,000 13,063 4,727 0.65 0.37 0.51
95,000 13,063 4,727 0.77 0.35 0.56

Table 3: PIT-2015 dev set performance using varying amounts of training data.

in other work on paraphrasing in the following ways:
(1) it contains sentences that are colloquial and opin-
ionated; (2) it contains paraphrases that are lexically
diverse; and (3) it contains many sentences that are
lexically similar but semantically dissimilar (Wei Xu
et al., 2015).

The training and development data was jointly
collected from 500+ trending topics and then ran-
domly split into the final training and development
sets. The test data was drawn from 20 randomly
sampled Twitter trending topics. Labels were col-
lected by having each sentence pair annotated by 5
different crowdsourced workers.

4.2 Evaluation and Discussion

For the unsupervised unfolding RAE training, we
experimented with using subsets of different sized
Twitter corpora of 50,000, 80,000 and 95,000 sen-
tences to evaluate the proposed system. Using PIT-
2015, we trained using tweets from the training set
and evaluated the resulting series of systems on the
dev set (Wei Xu et al., 2015). For supervised train-
ing, we used the training set from PIT-2015. For
training the unsupervised unfolding RAE vectors,
we collected additional data using the Twitter De-
veloper API. As shown in Table 3, we found that
increasing the size of the data set used to train the
RAE embeddings leads to strong gains in system
performance.! Notice that as the amount of data
used to train the RAE vectors increases, the preci-

"Due to time constraints we did not explore using more than
95,000 sentences to train our embedding model.
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Metrics Type | Accuracy
maxF1 0.457
mPrecision 0.543
mRecall 0.394
Pearson 0.303

Table 4: Results from the SemEval-2015.

sion value for paraphrase detection increases signif-
icantly while the recall value is actually falling.

The official evaluation metrics for SemEval-2015
Task 1 are Fl-score for paraphrase identification
and Pearson correlation for the semantic similarity
scores. The performance of our system on the shared
task evaluation data using these metrics is presented
in Table 4.

5 Conclusion and Future Work

We participated in SemEval 2015 Task 1: Para-
phrase and Semantic Similarity in Twitter using
a system architecture motivated by the success of
prior work on using RAE for paraphrase detection
(Socher et al. 2011). We find that the performance
of the system receives a sizable boost with the ad-
dition of a moderate amount of unsupervised RAE
training data.

In future work, we plan to try to improve perfor-
mance by first normalizing the Twitter data prior to
parsing. Given the mismatch between general do-
main English data and tweets, parse accuracy would
have likely been improved by performing a pre-
processing step that normalized the tweets prior to



giving them to the parser (Juri Ganitkevitch et al.,
2013; Brendan O Connor et al., 2010). This could
lead to improved downstream paraphrase detection
and similarity scoring. We would also like to ex-
plore using new learning algorithms for the final
paraphrase classification as well as alternative mech-
anisms of constructing the sentence level embedding
vectors.
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