
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 34–39,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

ECNU: Leveraging Word Embeddings to Boost Performance for Paraphrase
in Twitter

Jiang Zhao, Man Lan∗
Shanghai Key Laboratory of Multidimensional Information Processing

Department of Computer Science and Technology,
East China Normal University Shanghai 200241, P. R. China
51121201042@ecnu.cn; mlan@cs.ecnu.edu.cn∗

Abstract

This paper describes our approaches to para-
phrase recognition in Twitter organized as task
1 in Semantic Evaluation 2015. Lots of ap-
proaches have been proposed to address the
paraphrasing task on conventional texts (sur-
veyed in (Madnani and Dorr, 2010)). In this
work we examined the effectiveness of vari-
ous linguistic features proposed in tradition-
al paraphrasing task on informal texts, (i.e.,
Twitter), for example, string based, corpus
based, and syntactic features, which served as
input of a classification algorithm. Besides,
we also proposed novel features based on
distributed word representations, which were
learned using deep learning paradigms. Re-
sults on test dataset show that our proposed
features improve the performance by a mar-
gin of 1.9% in terms of F1-score and our team
ranks third among 10 teams with 38 systems.

1 Introduction

Generally, a paraphrase is an alternative surface
form in the same language expressing the same se-
mantic content as the original form and it can appear
at different levels, e.g., lexical, phrasal, sentential
(Madnani and Dorr, 2010). Identifying paraphrase
can improve the performance of several natural lan-
guage processing (NLP) applications, such as query
and pattern expansion (Metzler et al., 2007), ma-
chine translation (Mirkin et al., 2009), question an-
swering (Duboue and Chu-Carroll, 2006), see sur-
vey (Androutsopoulos and Malakasiotis, 2010) for
completion. Most of previous work of paraphrase
are on formal text. Recently with the rapidly growth

of microblogs and social media services, the compu-
tational linguistic community is moving its attention
to informal genre of text (Java et al., 2007; Ritter et
al., 2010). For example, (Zanzotto et al., 2011) de-
fined the problem of redundancy detection in Twitter
and proposed SVM models based on bag-of-word,
syntactic content features to detect paraphrase.

To provide a benchmark so as to compare and de-
velop different paraphrasing techniques in Twitter,
the paraphrase and semantic similarity task in Se-
mEval 2015 (Xu et al., 2015) requires the partici-
pants to determine whether two tweets express the
same meaning or not and optionally a degree score
between 0 and 1, which can be regarded as a bina-
ry classification problem. Paraphrasing task is very
close to semantic textual similarity and textual en-
tailment task (Marelli et al., 2014) since substan-
tially these tasks all concentrated on modeling the
underlying similarity between two sentences. The
commonly-used features in these tasks can be cat-
egorized into several following groups: (1) string
based which measures the sequence similarities of
original strings with others, e.g., n-gram Overlap,
cosine similarity; (2) corpus based which measures
word or sentence similarities using word distribu-
tional vectors learned from large corpora using dis-
tributional models, like Latent Semantic Analysis
(LSA), etc. (3) knowledge based which estimates
similarities with the aid of external resources, such
as WordNet; (4) syntactic based which utilizes syn-
tax information to measure similarities; (5) other
features such as using Named Entity similarity.

In this work, we built a supervised binary clas-
sifier for paraphrase judgment and adopted multi-

34

ple features used in conventional texts to recognize
paraphrase in Twitter, which includes string based
features, corpus based features, etc. Besides, we
also proposed a novel feature based on distribut-
ed word representations (i.e., word embeddings)
learned over a large raw corpus using neural lan-
guage models. The results on test dataset demon-
strate that linguistic features are effective for para-
phrase in Twitter task and proposed word embed-
ding features further improve the performance.

The rest of this paper is organized as follows. Sec-
tion 2 describes the features used in our systems.
System setups and experimental results on training
and test datasets are presented in Section 3. Finally,
conclusions and future work are given in Section 4.

2 Feature Engineering

In this section, we describe the our preprocessing
step and the traditional NLP linguistic features, as
well as the word embedding features used in our sys-
tems.

2.1 Preprocessing

We conducted following text preprocessing opera-
tions before we extracted features: (1) we recov-
ered the elongated words to their normal forms,
e.g., “goooooood” to “good”; (2) about 5,000 slangs
or abbreviations collected from Internet were used
to convert these informal texts into their complete
forms, e.g., “1dering” to “wondering”, “2g2b4g”
to “to good to be forgotten”; (3) the WordNet-
based Lemmatizer implemented in Natural Lan-
guage Toolkit1 was used to lemmatize all words to
their nearest base forms in WordNet, for example,
was is lemmatized to be. (4) we replaced a word
from one sentence with another word from the other
sentence if the two words share the same meaning,
where WordNet was used to look up synonyms. No
word sense disambiguation was performed and all
synsets for a particular lemma were considered.

2.2 String Based Features

We firstly recorded length information of given sen-
tences pairs using following eight measure function-
s: |A|, |B|, |A−B|, |B−A|, |A∪B|, |A∩B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A|
where |A| stands for the number of non-repeated

1http://nltk.org/

words in sentence A , |A − B| means the number of
unmatched words found in A but not in B , |A∪B| s-
tands for the set size of non-repeated words found in
either A or B and |A∩B| means the set size of shared
words found in both A and B .

Motivated by the hypothesis that two texts are
considered to be more similar if they share more
strings, we adopted the following five types of mea-
surements: (1) longest common sequence similar-
ity on the original and lemmatized sentences; (2)
Jaccard, Dice, Overlap coefficient on origi-
nal word sequences; (3) Jaccard similarity using
n-grams, where n-grams were obtained at three dif-
ferent levels, i.e., the original word level (n=1,2,3),
the lemmatized word level (n=1,2,3) and the char-
acter level (n=2,3,4); (4) weighted word overlap
feature (Šarić et al., 2012) that takes the impor-
tance of words into consideration, where Web 1T
5-gram Corpus2 was used to estimate the impor-
tance of words. (5) sentences were represented as
vectors in tf*idf schema based on their lemmatized
forms and then these vectors were used to calcu-
late cosine, Manhattan, Euclidean distance
and Pearson, Spearmanr, Kendalltau cor-
relation coefficients based on different perspectives.
Totally, we got thirty-one string based features.

2.3 Corpus Based Features

Corpus based features aim to capture the semantic
similarities using distributional meanings of words
and Latent Semantic Analysis (LSA) (Landauer and
Dumais, 1997) is widely used to estimate the dis-
tributional vectors of words. Hence, we adopted t-
wo distributional sets released in TakeLab (Šarić et
al., 2012), where LSA is performed over the New Y-
ork Times Annotated Corpus (NYT)3 and Wikipedi-
a. Then two strategies were used to convert the
distributional meanings of words to sentence level:
(i) simply summing up the distributional vectors of
words in the sentence, (ii) using the information con-
tent (Šarić et al., 2012) to weigh the LSA vector of
each word w and summing them up. At last we used
cosine similarity to measure the similarity of two
sentences based on these vectors. Besides, we used
the Co-occurrence Retrieval Model (CRM) (Weeds,

2https://catalog.ldc.upenn.edu/LDC2006T13
3https://catalog.ldc.upenn.edu/LDC2008T19

35

2003) as another type of corpus based feature. The
CRM was calculated based on a notion of substi-
tutability, that is, the more appropriate it was to sub-
stitute word w1 in place of word w2 in a suitable
natural language task, the more semantically similar
they were.

Besides, the extraction of aforementioned fea-
tures rely on large external corpora, while (Guo
and Diab, 2012) proposed a novel latent model,
i.e., weighted textual matrix factorization (WTM-
F), to capture the contextual meanings of words
in sentences based on internal term-sentence ma-
trix. WTMF factorizes the original term-sentence
matrix X into two matrices such that Xi,j ≈
P T∗,iQ∗,j , where P∗,i is a latent semantics vec-
tor profile for word wi and Q∗,j is the vec-
tor profile that represents the sentence sj . The
weight matrix W is introduced in the optimiza-
tion process in order to model the missing word-
s at the right level of emphasis. Then, we used
cosine, Manhattan, Euclidean functions
and Pearson, Spearmanr, Kendalltau corre-
lation coefficients to calculate the similarities based
on sentence representations. At last, we obtained
twelve corpus based features.

2.4 Syntactic Features

We estimated the similarities of sentence pairs at
syntactic level. Stanford CoreNLP toolkit (Manning
and Surdeanu, 2014) was used to obtain POS tag
sequences. Afterwards, we performed eight mea-
sure functions described in Section 2.2 over these
sequences, which resulted in eight syntactic based
features.

2.5 Other Features

We built a binary feature to indicate whether two
sentences in a pair have the same polarity (affirma-
tive or negative) by looking up a manually-collected
negation list with 29 negation words (e.g., scarcely,
no, little). Also, we checked whether one sentence
entails the other only using the named entity infor-
mation which was provided in the dataset. Finally,
we obtained nineteen other features.

2.6 Word Embedding Features

Recently, deep learning has achieved a great suc-
cess in the fields of computer vision, automatic

speech recognition and natural language processing.
As a consequence of its application in NLP, word
embeddings have been building blocks in many
tasks, e.g., named entity recognition and chunk-
ing (Turian et al., 2010), semantic word similari-
ties (Mikolov et al., 2013a), etc. Being distribut-
ed representation of words, word embeddings usu-
ally are learned using neural networks over a large
raw corpus and has outperformed LSA for pre-
serving linear regularities among words (Mikolov
et al., 2013a). Due to its superior performance,
we adopted word embeddings to estimate the sim-
ilarities of sentence pairs. In our experiments, we
used seven different word embeddings with differ-
ent dimensions: word2vec (Mikolov et al., 2013b),
Collobert and Weston embeddings (Collobert and
Weston, 2008) and HLBL embeddings (Mnih and
Hinton, 2007). Word2vec embeddings are dis-
tributed within the word2vec toolkit4 and they are
300-dimensional vectors learned from Google News
Corpus which consists of over a 100 billion word-
s. Collobert and Weston and HLBL embeddings are
learned over a part of RCV1 corpus which consist-
s of 63 millions words, with 25, 50, 100, or 200
dimensions and 50, 100 dimensions over 5-gram
windows respectively. To obtain sentence repre-
sentations, we simply summed up embedding vec-
tors corresponding to the non-stopwords tokens in
bag of words (BOW) of sentences. After that, we
used cosine, Manhattan, Euclidean func-
tions and Pearson, Spearmanr, Kendalltau
correlation coefficients to calculate the similarities
based on these synthetic sentence representations.
We got ninety word embedding features.

3 Experiments and Results

3.1 System Setups
The organizers provided 13,063 training pairs to-
gether with 4,727 development pairs in development
phase and 972 test pairs in test phase. We removed
the debatable instances (i.e., two annotators vote for
yes and the other three for no) existing in the dataset,
which resulted in 11,530 training pairs and 4,142 de-
velopment pairs. We built two supervised classifica-
tion systems over these datasets. One is mlfeats
which only uses the traditional linguistic features

4https://code.google.com/p/word2vec

36

Algorithm
mlfeats nnfeats

Precision Recall F1 Precision Recall F1
SVC(0.1) 0.756 0.942 0.839 0.756 0.942 0.839
GB(140) 0.756 0.939 0.838 0.754 0.940 0.837
GB(150) 0.755 0.939 0.837 0.753 0.939 0.836
RF(45) 0.754 0.937 0.835 0.749 0.936 0.832

Table 1: Top results of different classification algorithms in systems mlfeats and nnfeats on development dataset
together with parameter values in brackets.

System F1-Rank Precision Recall F1
ECNU nnfeats 4 0.767 0.583 0.662
ECNU mlfeats 10 0.754 0.560 0.643
BASELINE logistic 21 0.679 0.520 0.589
BASELINE WTMF 28 0.450 0.663 0.536
BASELINE random 38 0.192 0.434 0.266
ASOBEK svckernel 1 0.680 0.669 0.674
ASOBEK linearsvm 2 0.682 0.663 0.672
MITRE ikr 3 0.569 0.806 0.667

Table 2: Performance and rankings of systems mlfeats, nnfeats and baseline systems on test dataset officially
released by the organizers, as well as top ranking systems.

(i.e., features described in Section 2.2-2.5, 64 fea-
tures in total) and the other is nnfeatswhich com-
bines the traditional linguistic features with the word
embedding features (148 features in total). Sever-
al classification algorithms were explored on devel-
opment dataset including Support Vector Classifi-
cation (SVC, linear), Random Forest (RF), Gradi-
ent Boosting (GB) implemented in the scikit-learn
toolkit (Pedregosa et al., 2011) and a large scale
of parameter values in these algorithms were tuned,
i.e., the trade-off parameter c in SVR, the number of
trees n in RF, the number of boosting stages n in G-
B. F-score was used to evaluate the performance of
systems.

3.2 Results and Discussion

Table 1 presents the best four F1 results achieved by
different algorithms together with their parameters
in system mlfeats and nnfeats on developmen-
t dataset. The results show that these two system-
s consistently yield comparable performance, which
means that our proposed features based on word em-
beddings have little help to detect paraphrase on de-
velopment set. And we also find that SVC performs
slightly better than GB and RF algorithm. There-

fore, we adopted a major voting schema based on
SVC (c=0.1) and GB (n=140,150) in test period.

Table 2 summarizes the performance and ranks of
our systems on test dataset, along with the baseline
systems provided by the organizers and the top three
systems. From this table, we observe following find-
ings. Firstly, nnfeats using word embedding fea-
tures outperforms the system mlfeats only using
traditional linguistic features by 1.9%, which is in-
consistent with the findings on development set. The
possible reason may be that test data is collected
from a different time period while train and devel-
opment data is from the same time period while the
word embedding features might more or less cap-
ture this differences. Secondly, our results are sig-
nificantly better than the three baseline systems s-
ince our systems incorporate the features used in
baseline systems and other effective features. Third-
ly, the top 1 system (i.e., ASOBEK svckernel)
yields 3.1% and 1.2% improvement over our system
mlfeats and nnfeats respectively, which indi-
cates that word embedding features and traditional
linguistic features are effective in resolving Twitter
paraphrase problem.

To explore the influence of different feature type-

37

s, we conducted feature ablation experiments where
we removed one feature group from all feature set
every time and then executed the same classifica-
tion procedure. Table 3 shows the results of fea-
ture ablation experiments. From this table, we can
see that the most influential features for recognizing
tweet paraphrase is corpus based features and the
second most important feature group is word em-
bedding features, which are within our expectation
since these two kinds of feature take advantage of
the semantic meaning of words.

Feature Precision Recall F1
All 0.767 0.583 0.662
-string 0.717 0.594 0.650 (-0.012)
-corpus 0.772 0.543 0.638 (-0.024)
-syntactic 0.797 0.560 0.658 (-0.004)
-other 0.784 0.560 0.653 (-0.009)
-embedding 0.823 0.531 0.646 (-0.016)

Table 3: The results of feature ablation experiments.

4 Conclusion

In this paper we address paraphrase in Twitter task
by building a supervised classification model. Many
linguistic features used in traditional paraphrase task
and newly proposed features based on word embed-
dings were extracted. The results on test dataset
demonstrate that (1) our proposed word embedding
features improve the performance by a value of
1.9%; (2) the linguistic features used in paraphrase
on conventional texts task are also useful and effec-
tive in Twitter domain.

Acknowledgements

This research is supported by grants from Science
and Technology Commission of Shanghai Munici-
pality under research grant no. (14DZ2260800 and
15ZR1410700) and Shanghai Collaborative Innova-
tion Center of Trustworthy Software for Internet of
Things (ZF1213).

References

Ion Androutsopoulos and Prodromos Malakasiotis.
2010. A survey of paraphrasing and textual entailment
methods. J. Artif. Int. Res., pages 135–187.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167.

Pablo Ariel Duboue and Jennifer Chu-Carroll. 2006. An-
swering the question you wish they had asked: The im-
pact of paraphrasing for question answering. In NAA-
CL, Companion Volume: Short Papers, pages 33–36.

Weiwei Guo and Mona Diab. 2012. Modeling sentences
in the latent space. In ACL, pages 864–872.

Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng.
2007. Why we Twitter: understanding microblogging
usage and communities. In Proceedings of the 9th We-
bKDD and 1st SNA-KDD 2007 workshop on Web min-
ing and social network analysis, pages 56–65.

Thomas K Landauer and Susan T Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological review, page 211.

Nitin Madnani and Bonnie J Dorr. 2010. Gener-
ating phrasal and sentential paraphrases: A survey
of data-driven methods. Computational Linguistics,
36(3):341–387.

Christopher D. Manning and Mihai et al. Surdeanu.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In 52nd ACL : System Demonstra-
tions.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffael-
la Bernardi, Stefano Menini, and Roberto Zamparelli.
2014. Semeval-2014 task 1: Evaluation of composi-
tional distributional semantic models on full sentences
through semantic relatedness and textual entailment.
In SemEval, pages 1–8.

Donald Metzler, Susan Dumais, and Christopher Meek.
2007. Similarity measures for short segments of text.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corra-
do, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido
Dagan, Marc Dymetman, and Idan Szpektor. 2009.
Source-language entailment modeling for translating
unknown terms. In ACL, pages 791–799.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of the 24th international conference on
Machine learning, pages 641–648.

38

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
et al. 2011. Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12:2825–
2830.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of Twitter conversations. pages
172–180.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In the 48th ACL, pages
384–394.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. TakeLab: Systems
for measuring semantic text similarity. In *SEM 2012
and (SemEval 2012), pages 441–448, Montréal, Cana-
da.

Julie Elizabeth Weeds. 2003. Measures and applications
of lexical distributional similarity. Ph.D. thesis, Uni-
versity of Sussex.

Wei Xu, Chris Callison-Burch, and William B. Dolan.
2015. SemEval-2015 Task 1: Paraphrase and semantic
similarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval), Denver, CO.

Fabio Massimo Zanzotto, Marco Pennacchiotti, and
Kostas Tsioutsiouliklis. 2011. Linguistic redundan-
cy in Twitter. In EMNLP, pages 659–669.

39

