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Abstract

This paper describes the system developed by
our team (HLTC-HKUST) for task 1 of Se-
mEval 2015 workshop about paraphrase clas-
sification and semantic similarity in Twitter.
We trained a neural network classifier over a
range of features that includes translation met-
rics, lexical and syntactic similarity score and
semantic features based on semantic roles. The
neural network was trained taking into consid-
eration in the objective function the six dif-
ferent similarity levels provided in the corpus,
in order to give as output a more fine-grained
estimation of the similarity level of the two
sentences, as required by subtask 2. With an
F-score of 0.651 in the binary paraphrase clas-
sification subtask 1, and a Pearson coefficient
of 0.697 for the sentence similarity subtask 2,
we achieved respectively the 6th place and the
3rd place, above the average of what obtained
by the other contestants.

1 Introduction

Paraphrase identification is the problem to determine
whether two sentences have the same meaning, and is
the objective of the task 1 of SemEval 2015 workshop
(Xu et al., 2015).

Conventionally this task has been mainly evaluated
on the Microsoft Research Paraphrase corpus (Dolan
and Brockett, 2005), which consists of pairs of sen-
tences taken out from news headlines and articles.
News domain sentences are usually grammatically
correct and of average to long length. The current
state-of-the-art method to our knowledge on this cor-
pus (Ji and Eisenstein, 2013) trains an SVM over
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latent semantic vectors, lexical and syntactic simi-
larity features. Although their main objective was
to show the effectiveness of a method based on la-
tent semantic analysis, it is also evident that other
features pertinent to different aspects of sentence sim-
ilarity are able to boost the results. Previously Socher
et al. (2011) used a recursive autoencoder to simi-
larly obtain a vector representation of each sentence,
again combining other lexical similarity features to
improve the results. Other methods, such as Mad-
nani et al. (2012) or Wan et al. (2006) used instead a
more traditional supervised classification approach
over different sets of features and different classifiers,
most of which improved previous results.

Task 1 of SemEval 2015 workshop required to
evaluate paraphrases on a new corpus, consisting of
sentences taken from Twitter posts (Xu et al., 2014).
Twitter sentences notoriously differ from those taken
from news articles: the 140 characters limit makes
the sentences short, with few words, lots of different
abbreviations; they also include many misspelled and
invented words, and often lack a correct grammatical
structure. Another important difference is the six-
level classification labels provided, compared to the
binary labels of MSRP corpus, which allows a fine-
grained evaluation of the similarity level between the
sentences.

The task was divided into two subtasks. Subtask
1 was the classical binary paraphrase classification
task, where given a pair of sentences the system had
to identify if it is a paraphrase or not. Subtask 2
instead required the system to provide a score in the
range [0, 1] that measures the actual similarity level
of the two sentences.
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2 System Description

We chose a supervised machine learning strategy
based on a multi-view set of features. Our first goal
was to select the features in order to get a complete
estimation of lexical, syntactic and semantic similar-
ity between any given pair of sentences. In particular
we were interested in what roles semantic features
can play in this task. The second goal was to make
use of a classifier which can take full advantage of the
six level labeling provided in order to have good per-
formance in both subtasks, identified in an artificial
neural network.

2.1 Lexical and Syntactic Similarity Features

The first set of lexical features includes three binary
indexes obtained from the analysis of the numerical
tokens: the first of them is 1 if they are the same in
both sentences or there are not any, the second is 1
only if they are the same, and the third is 1 if the
tokens representing numbers of one sentences are the
subset of the other (Socher et al., 2011). Two other
features include the percentage of overlapping tokens,
and the difference in sentence length. Another feature
considers the word order: starting from one sentence
we align the tokens that matches with the other sen-
tence, and for each aligned pair we take the average
of the differences of the absolute positions of the two
elements, normalized by the length of the first sen-
tence, and we do the same switching the order of the
two sentences. Another group of features involves
WordNet word synonym sets (Miller, 1995). We take
from them, separately for nouns and verbs, the av-
erage of the path similarity scores obtained, among
all word alignments, from the one which gives the
maximum score. When the two words in the pair
to be scored have multiple synonym sets we select
the two sets that again are giving the highest score.
Finally, in order to include an estimation of the level
of similarity in the syntax parse tree of the sentences,
we use the parse tree edit distance from the Zhang-
Shasha algorithm (Zhang and Shasha, 1989; Wan
et al., 2006).

2.2 Semantic Similarity Features

The way we evaluate the semantic similarity of each
pair of sentences is through the analysis of the se-
mantic roles. The first feature we choose in this

24

sense is the semantic role based MEANT machine
translation score (Lo et al., 2012), effective to pro-
vide, as shown by various experiments, a translation
evaluation closer to human judges. This metric first
annotates each sentence with semantic roles (Pradhan
et al., 2004), then aligns them and computes a similar-
ity score only within the aligned frames (Fung et al.,
2007) using the Jaccard coefficient (Tumuluru et al.,
2012). Another set of features is obtained by looking
at the semantic roles themselves and their alignment
without looking at the content: these include the per-
centage of semantic roles of one sentence that are
also present in the other, the percentage of correct
pairs of semantic roles after the alignment operated
for MEANT, and a binary feature equal to 1 in case
the semantic parser fails to give any output for at
least one of the sentences. In this last case all the
other features based on semantic roles are 0 except
the MEANT score which is set to the value of the
Jaccard coefficient between the whole sentences (Lo
and Wu, 2013).

2.3 Translation Metrics

Previous work (Finch et al., 2005; Madnani et al.,
2012) have shown that machine translation evalua-
tion metrics are useful for the paraphrase recognition
task, due to their ability to capture useful similarity
information to correctly classify the sentence pairs.
The various translation metrics all take into
account different aspects of sentence similarities.
BLEU (Papineni et al., 2002) and the subsequent
evaluation metrics such as NIST (Goutte, 2006) and
SEPIA (Habash and Elkholy, 2008) look at n-gram
overlaps between the source and the target sentences.
While the most basic BLEU takes into consideration
only n-gram overlap, the other metrics also consider
synonyms, stemming, simple paraphrase patterns and
the syntactic structure of the n-grams. Yet another
set of metrics are based instead on different princi-
ples: TER (Snover et al., 2006) and TERp (Snover
et al., 2009) count the number of edits needed to
transform a sentence into the other, MAXSIM (Chan
and Ng, 2008) evaluates lexical similarity perform-
ing a word-by-word matching and finding out how
much the aligned words are similar in each mean-
ing, BADGER (Parker, 2008) the distance between
the compression of each sentence obtained from the
Burrows-Wheeler transform algorithm (Burrows and



Wheeler, 1994), and MEANT which, as discussed in
the previous section, scores the similarity of aligned
semantic frames.

For each pair of sentences the scores are calculated
first taking one of the sentences as the reference and
the other as the sample and then vice-versa. Both
scores are included as distinct features except in the
case of BADGER, as it computes a distance between
two objects without taking into account the direction.
In case of BLEU and NIST we use the scores from
unigrams up to 4-grams for BLEU (Madnani et al.,
2012) and up to the maximum order which gives at
least one result different than zero for NIST.

2.4 Classifier

To classify the sentence pairs we design a feedfor-
ward neural network. One of the main properties
of the neural network is its ability to learn complex
functions of the input values (Hornik et al., 1989). It
follows that in our task, given the combination of fea-
tures, the network would learn how to combine them
effectively and take advantage of their mutual interac-
tion. The neural network can also be trained using an
objective function that takes into consideration a la-
bel not just binary but which can take multiple values
in a given range. Therefore it has a good ability to
determine as output a precise estimation of the sim-
ilarity level of the sentence pair, particularly useful
in subtask 2. During our experiments the results we
obtained in the binary classification task over the de-
velopment set with the neural network were always at
least slightly higher than those obtained with an SVM
we used as a comparison system, further justifying
our neural network choice.

We choose a two layer standard configuration (hid-
den and output layer), where we fix the size of the
hidden layer large enough at three times the size of
the input layer; the hyperbolic tangent (tanh) and the
sigmoid are used respectively as the non-linear acti-
vation functions of the hidden layer and the output
layer. Due to this choice the output assumes values
in the interval [0, 1], which is also exactly the output
range required in subtask 2. The network weights,
with the exception of the ones associated to the bias
terms set at zero, are initialized (Glorot and Bengio,
2010) with uniform values in the range:
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Where a = 1 in case the activation function is the
hyperbolic tangent, and o = 4 with the sigmoid. We
train the model using standard backpropagation algo-
rithm, taking the cross-entropy as the cost objective
function:

E=—llog(y) = (1-Dlog(l—y)+ R (2)

where y is the network output, [ the objective value
(both in the range [0, 1]), and R is an L2 regulariza-
tion term.

3 Experiments

3.1 Corpus

We made use of the corpus provided for the contest
(Xu et al., 2014), made of a training set of 13063
sentence pairs, a development set of 4727 pairs, and
a test set of 972 pairs released a few days before the
deadline without the labels. Each pair of sentences
was labeled by five users via Amazon Mechanical
Turk, hence providing a six-level classification label
(from (5, 0) when all the five user classify the pair as
a paraphrase, to (0, 5) when none of them identifies
the pair to be a paraphrase).

3.2 Experimental Setup

The neural network was setup with a hidden layer
dimension of three times the input. The development
set was used to tune the L2 regularization coefficient,
set at v = 0.01, as well as the learning rate and the
other hyperparameters, and to have a measure of im-
provement against the official thresholding baseline
provided for the task (Das and Smith, 2009). To
implement the neural network we used THEANO
Python toolkit (Bergstra et al., 2010).

We train the network with all the sentences pro-
vided in the training set. The objective label of the
cross-entropy objective function was set to 1.0 for
pairs labeled (5, 0) and (4, 1), 0.75 for pairs labeled
(3,2), 0.5 for pairs labeled (2, 3) and 0.0 for pairs la-
beled (0, 5). This choice allowed a more fine training
for task 2, where a continuous similarity value must
be estimated, without altering too much the behavior
in the binary estimation task 1.

The training procedure was repeated several times,
each time with a different random initialization of the
weights and with a different random pair order. In
order to avoid overfitting, in each run the training was



Subtask 1 Subtask 2
Description Precision  Recall ~ F-score | Precision Recall F-score Pearson
Subtask 1 best (ASOBEK) 0.680 0.669 0.674 0.732 0.531 0.616 0.475
Subtask 2 best (MITRE) 0.569 0.806 0.667 0.750 0.686 0.716 0.619
Our method, run 2 0.574 0.754 0.652 0.738 0.611 0.669 0.545
Our method, run 1 0.594 0.720 0.651 0.697 0.657  0.676 0.563
Baseline (Das and Smith, 2009) 0.679 0.520 0.589 0.674 0.543 0.601 0.511
Contest average result 0.600 0.626 0.581 0.645 0.626 0.631 0.483

Table 1: Result comparison between our method and the winners of subtask 1 and subtask 2.

stopped when the best results on the development set
were obtained. The final results were taken from the
run that yielded the best accuracy, and in case of tie
the best F1 score, on the development set for subtask
1.

Run 2 instead was an attempt to include latent
semantic vectors obtained through the procedure de-
scribed in Ji and Eisenstein (2013) and added to the
network from an extra layer whose output was con-
catenated to the features input vector.

3.3 Results and Discussion

F-measure and Pearson coefficient were the official
evaluation metrics used to rank respectively subtask
1 and subtask 2. In subtask 1 — binary evaluation of
the sentence pairs — we achieved an F-score of 0.651
and ranked 6th over 18 methods, the best method
(ASOBEK) achieved an F-score of 0.674. In subtask
2, which was aimed at finding a similarity score in
the range [0, 1], with a Pearson coefficient of 0.563
we reached the 3rd place among 13 methods (the
other five provided only a binary output), with the
winner (MITRE) obtaining a Pearson score of 0.619.
A summary and comparison of our results with the
winners of the two subtasks, with the average results
and with the supervised official baseline (n-gram
overlapping features with logistic regression from
Das and Smith (2009)) is shown in table 1. For both
tasks our results are above the average both in term
of ranking and average results.

Semantic features were useful to identify para-
phrases, as they improved the accuracy and F-score
on the development set by 0.6%. But often the shal-
low semantic parser failed to give an output for many
sentences, limiting their potential contribution. This
is due to two main reasons. The first one is the imper-
fect accuracy of the semantic parser itself, also ob-
served in previous experiments where we employed
it, which fails to analyze sentences containing certain
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patterns and predicates. The second reason, more
specific to Twitter domain, is that some sentences
lack a valid predicate or a proper grammatical struc-
ture. This prevents the semantic parser from giving
an accurate output.

The inclusion on latent semantic features in run
2 proved to be ineffective, as it improved subtask
1 F-score by less than 0.001, and gave a worse per-
formance in subtask 2. During the evaluation phase
other experiments were tried as using the latent se-
mantic vectors of Guo and Diab (2012), or using
the vectors as described in Ji and Eisenstein (2013)
instead of the extra layer, and other modifications,
all without obtaining any perceptible improvement
when the system was tested on the development set.
The non-perfect implementation and usage of these
features, together with the fact they might not be suit-
able to be applied to Twitter domain, may explain
this lack of improvement.

4 Conclusions

We have used a neural network classifier, with a com-
bination of multiple views of lexical, syntactic and
semantic information, as the system which partici-
pated in SemEval 2015 task 1, whose goal was to
classify paraphrases in Twitter. The inaccurate se-
mantic parsing is the main reason which prevented
us from obtain higher results. A possible future di-
rections that can improve the quality of the semantic
roles annotations, apart from improving the semantic
parser, is to apply an effective lexical normalization
method (such as Han and Baldwin (2011)), and even-
tually find ways to reconstruct the predicate in case
it is missing.
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