Graph-based Coherence Modeling For Assessing Readability

Mohsen Mesgar and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

(mohsen.mesgar|michael.strube)@h-its.org

Abstract

Readability depends on many factors rang-
ing from shallow features like word length
to semantic ones like coherence. We intro-
duce novel graph-based coherence features
based on frequent subgraphs and compare
their ability to assess the readability of Wall
Street Journal articles. In contrast to Pitler
and Nenkova (2008) some of our graph-based
features are significantly correlated with hu-
man judgments. We outperform Pitler and
Nenkova (2008) in the readability ranking task
by more than 5% accuracy thus establishing a
new state-of-the-art on this dataset.

1 Introduction

Readability depends on many factors which enable
readers to process a text. These factors can be used
by readability assessment methods to quantify the
difficulty of text understanding. Possible applica-
tions of readability assessment are automatic text
summarization and simplification systems. Measur-
ing readability can also be used in question answer-
ing and knowledge extraction systems to prune texts
with low readability (Kate et al., 2010).

Many different text features have been used to
assess readability. They include shallow features
(Flesch, 1948; Kincaid et al., 1975), language
modeling features (Si and Callan, 2001; Collins-
Thompson and Callan, 2004), syntactic features
(Schwarm and Ostendorf, 2005) and text flow or
coherence (Barzilay and Lapata, 2008; Pitler and
Nenkova, 2008). In a coherent text each sentence
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has some connections with other sentences. Al-
though these local connections make the text more
readable, the corresponding coherence features used
in Pitler and Nenkova (2008) (Section 2) are not
strongly correlated with human judgments.

The main goal of this paper is to introduce novel
graph-based coherence features for assessing read-
ability. To achieve this goal, we use the entity graph
coherence model by Guinaudeau and Strube (2013)
(Section 3.1.1) and follow two ideas. The first main
idea is to use a graph representation of rhetorical re-
lations between sentences of a text (Section 3.1.2)
and to merge the entity graph and the rhetorical
graph (Section 3.1.3). Hence we enrich the entity
graph and consequently consider the distribution of
two aspects of coherence (i.e. entities and discourse
relations) simultaneously. The second main idea is
to apply subgraph mining algorithms to find frequent
subgraphs (i.e. patterns) in texts (Section 3.2). Sub-
graph mining has been successfully applied to other
tasks, e.g. image processing (Nowozin et al., 2007)
and language modeling (Biemann et al., 2012). We
hypothesize that text coherence correlates with fre-
quent subgraphs (vaguely reminding us of coherence
patterns (Danes, 1974)) and that the mined patterns
are good predictors for readability ratings.

Our study is novel in introducing new and infor-
mative graph-based coherence features. We examine
the predictive power of these feature in two experi-
ments: first, readability rating prediction, and sec-
ond, ranking texts according to the readability (Sec-
tion 5).
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Figure 1: The entity graph representation of the text in Table 1. Dark entities are shared by the sentences.

2 Readability Assessment

The quality of a text depends on different factors
which make the text easier to read. These factors
range from shallow features like word length to se-
mantic features like coherence. Readability assess-
ment leads to two problems: distinguishing and rec-
ognizing readability levels of texts and predicting
human readability ratings.

Pitler and Nenkova (2008) use all entity transi-
tions of the entity grid model (Barzilay and Lapata,
2008) as coherence features. They compute the cor-
relation between them and readability ratings and
show that none of them is significantly correlated
with human readability judgments. Indeed, none of
these features on its own is a good predictor to mea-
sure coherence and to predict readability as well.

3 Method

We introduce the graph representation of a text and
propose to use these graphs to model coherence.

3.1 Graphs
3.1.1 Entity Graph

Guinaudeau and Strube (2013) describe a graph-
based version of the entity grid (Barzilay and Lap-
ata, 2008) which models the interaction between en-
tities and sentences as a bipartite graph. This graph
contains two sets of nodes: sentences and entities.
Sentence and entity nodes are connected if and only
if the entity is mentioned in the sentence (Figure 1).
Edges are weighted according to the grammatical
role of the entity mentioned in the sentence.
Guinaudeau and Strube (2013) model entity tran-
sitions between sentences via a one-mode projec-
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tion of the entity graph. The one-mode projec-
tion is a graph consisting of sentence nodes that
are connected if and only if they have at least one
entity in common in the entity graph. One-mode
projections are directed as they follow the text or-
der. Hence, backward edges never occur. Guin-
audeau and Strube (2013) introduce three kinds of
projections. The unweighted projection PEX models
the existence of the entity connections between sen-
tences. The weighted projection PER uses the num-
ber of shared entities by sentences as a weight for the
corresponding edge (Figure 2). PER takes the gram-
matical function of entities in sentences into account
as edge weights. Guinaudeau and Strube (2013)
show that PER does not perform well for readabil-

acc
ity assessment. It does not outperform PER in our

S1: The [Associated] [Press]’s [earthquake] [coverage]
drew [attention] to a [phenomenon] that deserves some
[thought] by public [officials] and other [policy] [mak-
ers].

S2: Private [relief] [agencies], such as the [Salvation]
[Army] and [Red] [Cross], mobilized almost instantly
to help [people], while the [Washington] [bureaucracy]
”took [hours] getting into [gear].”

S3: One [news] show we saw [yesterday] even displayed
25 federal [officials] meeting around a [table].

S4: We recall that the [mayor] of [Charleston] com-
plained bitterly about the federal [bureaucracy]’s re-
sponse to [Hurricane Hugo].

S5: The [sense] grows that modern public [bureaucra-
cies] simply don’t perform their assigned [functions]
well.

Table 1: A sample text from the Wall Street Journal
dataset (Pitler and Nenkova, 2008).
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Figure 2: PER: unweighted, and PER: weighted projec-
tion graphs. In the weighted projection all edge weights
are equal to one, because all sentences share one entity.

experiments as well. Thus, we do explain further
details of PER here.

3.1.2 Discourse Relation Graph

Lin et al. (2011) and Lin (2011) use Rhetorical
Structure Theory (RST) to describe and model co-
herence by considering the transitions between dis-
course relations. Inspired by the entity grid they ex-
pand the relation sequence into a two-dimensional
matrix whose rows and columns are sentences and
entities, respectively. The cell (s;,e;) corresponds
to the set of discourse relations entity e; is involved
with in sentence s;. These methods are based on en-
tity transitions which, however, are intuitively im-
plausible, because discourse relations connect sen-
tences (or elementary discourse units).

Since discourse relations capture interactions be-
tween sentences (Table 2), we model these relations
with a graph.

Relation Argl Arg2
Implicit_Expansion S1 S2
Explicit_Comparison S2 S2
Implicit_Expansion S2 S3
Implicit_Temporal S3 S4
Implicit_Contingency S4 S5

Table 2: PDTB-style discourse relations (Prasad et al.,
2008) of the sample text in Table 1

A discourse relation graph is PPR = (V,R), where
V is the set of sentence nodes and R is the edge
set which represents all discourse relations in the
text. Two sentence nodes are adjacent if and only
if they are connected by at least one discourse rela-
tion. Intra-sentential discourse relations are repre-
sented as self-edges. We define PPR as a weighted
discourse relation graph whose edge weights are
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Figure 3: PPR: unweighted, and PDR: weighted discourse
relation graphs.

the number of discourse relations between sentence
nodes (Figure 3).

3.1.3 Combined Entity and Discourse Relation
Graphs

Both projection and discourse relation graphs rep-
resent different types of connections. These graphs
can be merged by employing basic operators.

We use the V operator (logical OR) to combine
the projection graph PER with the PP graph. The
V operator takes two sentence nodes and creates an
edge between them if they are connected at least
by one connection, whether entity transition (PEF)
or discourse relations (PPR). The other basic logi-
cal operators (e.g. A or @) lose connections. Hence
we do not report on their performance. Inspired by
linear regression models we combine the weighted
graphs by adding (+) the edge weights in PER and
PDR (Figure 4).
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Figure 4: Combined entity and discourse relation graphs.

3.2 Coherence Features

We use the proposed graphs to introduce novel co-
herence features.

Average outdegree. Measures to which extent a
sentence is connected with other sentences (Guin-
audeau and Strube, 2013):

OutD.
AvgOutDegree (P) = Yses M||S||6gree(s)




where OutDegree(s) is the sum of the weights as-
sociated with edges that leave node s and ||S|| is the
number of sentences in the text.

Number of components. The projection graph
can be disconnected. A graph is disconnected if
there are at least two nodes which are not reachable
from each other (like s; and s, in Figure 2). A max-
imal non-empty connected subgraph in a graph is
called component. Each projection graph in Figure
2 contains two components. Intuitively, projection
graphs of a more coherent text should contain fewer
number of components. The outdegree does not cap-
ture this type of connectivity. E.g., in Figure 5 the
average outdegree of the two graphs is equal, while
the left graph contains more components and should
be less coherent.
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Figure 5: Two graphs with the same outdegree value.
Graph (a) has two components. It is less coherent.

Frequent subgraphs. We hypothesize that par-
ticular coherence patterns show a correlation with
readability. These patterns are encoded as subgraphs
in graphs. An advantage is that coherence can be
measured beyond simple sentence or node connec-
tivity. We first define the graph concepts employed.

Isomorphic. Two graphs G and G’ are isomorphic,
if they fulfill two conditions: there should be a one-
to-one association between nodes of G’ and those of
G, and two nodes of G’ should be connected, if and
only if their associated nodes in G are connected.

Subgraph. Graph G’ is a subgraph of graph G, if
G' is isomorphic to a graph whose nodes and edges
are in G.

k-node subgraph. A subgraph with k nodes is
called k-node subgraph.

Induced subgraph. The graph G’ is an induced
subgraph of graph G, if G’ is a subgraph of G whose
nodes are connected by all edges which connect the
corresponding nodes in G (Figure 6). We always
mean induced subgraphs when using the term sub-
graph.

Frequent subgraph & minimum support. Let § =
{G1,G,,--- ,G,} be a database of n graphs. For
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Figure 6: Both graphs (b) and (c) are subgraphs of (a).
Only (c) is an induced subgraph of (a).

each subgraph sg, support(sg) denotes the number
of graphs (in {) which contain sg as a subgraph. A
subgraph sg is a frequent subgraph if and only if
support(sg) > A, where A is called minimum sup-

port.
Graph signature. Given a set of fre-
quent subgraphs {sgi,sg2,...,5¢m}, @ graph

signature for G € { is the vector ®(G) =
((p(Sgl,G),(P(ng,G),...,(P(ng,G)),Where

count(sg;, G)

ngjG(Sgl $5821-..5gm) COUNT (ng, G)

(p(sgi,G)

Here count(sg;,G) is the number of occurrences
of sg; in graph G. We use the relative frequency
¢(sgi,G) because it compares graphs with different
numbers of nodes and different numbers of edges.

Subgraph features are divided into two categories:
basic subgraphs and frequent large subgraphs.

Basic subgraphs. Instead of frequent subgraphs
all possible 3-node subgraphs (Figure 7) are used as
basic subgraphs because they are the smallest mean-
ingful subgraphs that can model coherence patterns.

NN TNVANLY
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Figure 7: All possible directed 3-node subgraphs.

Because backward edges never occur in one-
mode projections, only four subgraphs are feasible
(Figure 8).

We interpret these subgraphs as follows:

e sgi: The connection between a sentence and
subsequent ones. In other words, at least two
entities are mentioned in one sentence and the
subsequent ones are about these entities.
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Figure 8: Feasible 3-node subgraph coherence features.
Node labels illustrate the order of sentences. Sentence s;
occurs before sentence s,, and sentence s, occurs before
sentence s, (i.e. t < u <v).

e sgo: Indicates that entities in s; and s, get con-
nected to each other in s,,.

e sg3: Each sentence tends to refer to the most
prominent entity (focus of attention) in pre-
ceding sentences (Sidner, 1983; Grosz et al.,
1995). The absence of a connection between
s; and s, indicates that the entity connecting s;
and s, is different from the entity connecting s,
and s,. Therefore this subgraph approximately
corresponds to the shift of the focus of atten-
tion.

e sg4: Merges sg; and sg3 and represents all con-
nections of these two subgraphs.

We use these feasible 3-node subgraphs and com-
pute the graph signature, @, of each G € {. We pro-
pose each ¢ € P (i.e. relative frequency of each sub-
graph in G) as a connectivity feature of graph G to
measure text coherence.

Frequent large subgraphs. Since we observe a
strong correlation between basic subgraphs and hu-
man readability ratings (Table 4), we mine frequent
large subgraphs of projection graphs. Our intuition
is that larger subgraphs are more informative coher-
ence patterns. Hence, we extend the coherence fea-
tures from all feasible 3-node subgraphs to frequent
k-node subgraphs. We first use an efficient subgraph
mining algorithm to extract all subgraphs with size &
and then compute the count of each subgraph as an
induced subgraph in each graph G € {. We retain a
subgraph sg, if it is frequent (i.e. support(sg) > A).
The result of these steps is a two-dimensional ma-
trix whose rows represent graphs in § and columns
represent frequent subgraphs with size k. The cell
(Gi,sgj) shows the count of sg; in graph G;. Given
this matrix, we compute the graph signature of each
G € ¢ and take each element of the graph signature
as a coherence feature.
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4 Experiments

4.1 Data

We use the dataset created by Pitler and Nenkova
(2008) which consists of randomly selected articles
from the Wall Street Journal corpus. The articles
were rated by three humans on a scale from 1 to 5
for readability based on quality measures that are de-
signed to estimate the coherence of articles. The fi-
nal readability score of each article is the average of
these three ratings.

We exclude three files from this dataset: wsj—
—-0382 does not exist in the Penn Treebank (Mar-
cus et al.,, 1994)!. wsj-2090 does not exist in
the Penn Discource Treebank (Prasad et al., 2008).
wsj—1398 is a poem.

4.2 Settings

Entity graph. We use the gold parse trees in the
Penn Treebank (Marcus et al., 1994) to extract all
nouns in a document as mentions. We consider
nouns with identical stem? as coreferent. We divide
the edge weight between two sentence nodes s; and
s; by their distance j— i to decrease the importance
of links that exist between non-adjacent sentences.
Discourse relation graph. We use gold PDTB-style
discourse relations (Prasad et al., 2008). We filter
out EntRel and NoRel relations.
Number of components. For counting the number
of components in each projection graph, the Sage-
Math? package is used. This feature is computed on
unweighted projections (i.e. PER).
Frequent subgraphs. Since subgraph mining is
an NP-complete problem, different algorithms have
been introduced to improve the performance of sub-
graph mining. We use the gSpan* algorithm (Yan
and Han, 2002) to mine subgraphs of a graph
database which contains PER projections. An advan-
tage of using efficient subgraph mining algorithms is
that we can exhaustively search very large subgraph
spaces. A graph with ||E|| edges, however, poten-
tially has & (2”E “) subgraphs. Having sparse graphs

IPitler and Nenkova (2008) also remove one file from their
experiments. We assume that it is ws j-0382.

2We use Stanford CoreNLP (http://nlp.stanford.
edu/software/corenlp.shtml)

Jhttp://sagemath.org/download-1linux.html

4We use the Java package: http://www.cs.ucsb.
edu/~xyan/software/gSpan.htm
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Figure 9: Frequent subgraphs with four nodes where ¢ <
u<v<w.

817 5819

and using efficient subgraph mining algorithm lets
us to search trough this space. We mine subgraphs
with k =4 and A = 0 (Figure 9).

4.3 Evaluation

We evaluate on the following benchmark tasks.

Readability assessment. We use the Pearson cor-
relation coefficient to find features correlated with
readability scores. It takes feature values and read-
ability scores of all articles and returns —1 < p <
+1. A high value of |p| shows a strong correlation.
We report statistical significance on the 0.05-level®.
Readability as ranking. We rank texts pairwise
with respect to their readability. We define a clas-
sification problem with a set of text pairs and a la-
bel, which indicates whether the first text in a pair

35The results written in bold face (Section 5).
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p p-value

Entity Graph

PER —-0.013 0.949
PER 0.151 0.452
Pfi’f 0.150 0.455
Discourse Relation Graph

PDR 0.150 0.455
PDR 0.155 0.440
Combination of Entity and Discourse Relation
PERyPPR 0,083 0.681
PER L PPR - 0.185 0.356
PER L PPR - 0.187 0.350

Table 3: The correlation of the average outdegree of dif-
ferent graphs with human readability ratings.

is more readable. We use every two texts whose hu-
man readability scores differ by at least 0.5. Each
text is represented with its graph-based coherence
features. We employ WEKA’s linear support vector
implementation (SMO) to classify the pairs. Perfor-
mance is evaluated using 10-fold cross-validation.

5 Results

Readability assessment. We report the correlation
of our coherence models encoded in graph features
and compare them with Guinaudeau and Strube’s
(2013) entity graph as the state-of-the-art coherence
model. Pitler and Nenkova (2008) show that the en-
tity transition features extracted from the entity grid
model (Barzilay and Lapata, 2008) on its own do
not significantly predict human readability ratings.
So we do not describe their results here.

The results for the outdegree feature is shown
in Table 3. The average outdegree of PER is
highly correlated with human readability ratings.
This confirms the readability results of Guinaudeau
and Strube (2013) on the Encyclopedia Britannica
dataset. The outdegrees of discourse relation graphs
are more strongly correlated with human readability
ratings than the outdegree of the projections in the
entity graph, suggesting that efficient graph-based
encoding of discourse relations can measure read-
ability well. The outdegree of the combined graph
PER 4 PDR s highly correlated, showing that the
interaction of entity connections and discourse re-
lations is important for text coherence. However,
none of the outdegree measures in this table are
significantly correlated with human readability rat-



ings, confirming the intuition that outdegree only
measures node connectivity in graphs and it is not
enough to measure readability.

p p-value
Number of Components —0.391  0.044
Relative frequency of 3-node Subgraphs

581 0.310 0.116
582 —-0.325  0.098
Sg3 —0.384  0.048
584 0.108  0.592

Table 4: Number of components and subgraph sg3 are
significantly correlated to readability.

Table 4 shows the correlation of two features
of projections®: The number of components has
a strong and significant negative correlation with
human readability ratings’, suggesting that simple
properties of graphs measure text coherence. The
lower part of Table 4 shows the correlation of the rel-
ative frequency of 3-node subgraphs (see Figure 8).
More readable articles have many sg; and few num-
ber of sg, patterns. Pattern sgs is significantly and
negatively correlated with human readability judg-
ments, confirming the intuition that many shifts in
focus of attention make texts difficult to read.

Table 5 shows the correlation between the rela-
tive frequency of 4-node subgraphs and readabil-
ity ratings. First, most subgraphs with less than
four edges are negatively correlated with readabil-
ity, except sgoo and sgo4 which are weakly corre-
lated with readability. Few connections between
sentences make the text difficult to read.

Second, the highest positive and significant cor-
relation of sgi» and the most negatively correlated
subgraph sgi; show that different patterns of edges
in subgraphs capture readability judgments. Stod-
dard (1991, p.29) explains this by the ambiguity
node phenomenon: “[...] in some cases, there may
be more than one logical, possible node for a given
cohesive element in a text, in which case, a reader
may see the resulting ambiguity but not be able to

6 Although, the proposed features can be applied on all kind
of presented graphs, we evaluate them (except outdegree) only
on projections of the entity graph model. We leave the applica-
tion to the other graph representations for future work.

"This supports Karamanis et al. (2009) who report that
NOCB transitions in the centering model can be used for the
sentence ordering task.
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number of edges p p-value

581 6 0.103  0.609
sg2 5 —0.212  0.288
5g3 5 —0.176  0.380
584 4 —0.257  0.196
5g5 5 —0.140 0. 486
586 5 0.200  0.317
sg7 5 —0.402  0.038
588 4 —-0.317  0.107
589 5 0.153  0.446
5810 4 —0.238  0.232
sg11 4 —0.509 0.007
Sg12 4 0.449  0.019
Sg13 4 —0.045 0.824
sg14 4 —0.033  0.870
5815 3 —0.358  0.067
5816 4 —0.068  0.736
5817 3 —0.308 0.118
Sg18 3 —0.546  0.003
Sg19 3 —0.601  0.001
5820 3 0.094 0.641

5821 4 0.068 0.736
5822 3 —0.374  0.055
5823 3 —0.314 0.111

5824 3 0.100  0.620

Table 5: The correlation between the relative frequency
of 4-node subgraphs and readability ratings.

decide between the choices”. E.g., in sgq; a reader
may make a decision about the focus of attention
in s, while in sg> the focus of attention of s, is
the same as the focus of attention of s;. This phe-
nomenon can also be observed in all positively cor-
related subgraphs. If readers have to return to one
point in the text, they prefer to return to a sentence
which is the core of the preceding sentences. How-
ever, we should refrain of interpreting too much into
these patterns.

Finally, we conclude that in all strongly negative
correlated subgraphs, a subgraph suffers either from
edge shortage or the ambiguity node phenomenon
like sg7.

Considering the correlation of 3-node subgraphs
in Table 4 and 4-node subgraphs in Table 5, two
results are noticeable. First, in large subgraphs
there are more strongly correlated subgraphs than
3-node subgraphs, confirming our hypothesis that
larger subgraphs convey coherence patterns with
higher quality. Second, sgi2 in 4-node subgraphs is
more strongly and positively correlated than sg4 in



3-node subgraphs, because sgj, captures more cir-
cumstances about s;. The relative frequency of sgi2
is more informative than sg4’s relative frequency.
Readability as ranking. Results of the readability
ranking problem are shown in Table 6. Baseline fea-
tures are entity transition features which are used as
coherence features by Pitler and Nenkova (2008)8.

Features Accuracy
Baselines

None (Majority class) 47.85%

Baseline features (Pitler and Nenkova, 2008) 83.25%
Graph-based Features

Number of components 61.72%

Basic subgraphs (3-node) 79.43%

Frequent large subgraphs (4-node) 89.00%

Frequent basic + large subgraphs 88.52%

Baseline features + frequent large subgraphs 93.30%

Table 6: SVM prediction accuracy.

When classifying with graph signatures based on
basic subgraphs, accuracy is lower than with the
baseline coherence features. This is probably related
to the entity grid features which represent gram-
matical role transitions of entities, while the basic
subgraphs only models the occurrence of entities
across sentences. Graph signatures based on large
subgraphs improve the performance of basic sub-
graphs by around 10%. This high accuracy ver-
ifies that larger subgraphs capture coherence pat-
terns with high quality. Combining basic (3-node)
and large subgraphs (4-node) cannot improve the
performance of the large subgraphs features. This
probably is because basic subgraphs are implicitly
included in larger subgraphs. The combination of
coherence baseline features and frequent large sub-
graphs improves the accuracy.

6 Related Work

There is a research tradition developing metrics for
readability and using these metrics to quantify how
difficult it is to understand a document. Shallow fea-
tures such as word, sentence and text length, which
only capture superficial properties of a text, have
been used traditionally (Flesch, 1948; Kincaid et al.,

8The accuracy reported in their paper is 79.42%. Our reim-
plementation achieves higher accuracy, because our dataset has
three articles less.
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1975). De Clercq et al. (2014) use traditional shal-
low features and apply these to a new corpus anno-
tated with two different methodologies. However,
some studies indicate that shallow features do not
precisely predict the readability of a text (Feng et al.,
2009; Petersen and Ostendorf, 2009). Later studies
introduce deeper (more semantic) features such as
those obtained by language models (Si and Callan,
2001; Collins-Thompson and Callan, 2004) and syn-
tactic features like the number of NPs in sentences
or the height of the sentence’s parse tree (Schwarm
and Ostendorf, 2005; Heilman et al., 2007). Barzi-
lay and Lapata (2008) propose an entity-based co-
herence model which operationalizes some of the
intuitions behind the centering model (Grosz et al.,
1995). Although this model works well on the sen-
tence ordering and summary coherence rating tasks,
it does not work well for readability assessment.
Only when combining the entity grid with features
taken from Schwarm and Ostendorf (2005) the en-
tity grid performs competitively.

While most of these studies predict the readabil-
ity level of documents, Pitler and Nenkova (2008)
present a new readability dataset with Wall Street
Journal articles, where each article is assigned hu-
man readability ratings. They analyze the correla-
tion between different readability features and hu-
man readability scores. They show no correla-
tion between entity-transition features and readabil-
ity scores. In contrast to them we are able to report
a statistically significant correlation between some
entity-based features and human readability ratings.

7 Conclusions

We proposed graph-based coherence features based
on the notion of frequent subgraphs. We analyzed
these features on the dataset created by Pitler and
Nenkova (2008) which associates human readabil-
ity ratings with each document. We have shown that
frequent subgraphs represent coherence patterns in
a text. Larger subgraphs obtain a high and statisti-
cally significant correlation with human readability
ratings.

Pitler and Nenkova (2008) did not achieve statis-
tically significant (positive or negative) correlations
between their features derived from the entity grid
and human readability ratings. In contrast, some of



our automatically induced subgraphs have a strong
statistically significant correlation. We also outper-
form Pitler and Nenkova (2008) in the readability
ranking task by more than 5% accuracy thus estab-
lishing a new state-of-the-art on this dataset. We
conclude that the graph-based representation (Guin-
audeau and Strube, 2013) is a better and more infor-
mative starting point for assessing readability.

In future work, we plan to induce common sub-
graphs and apply our method to different datasets
(e.g. the dataset created by De Clercq et al. (2014))
combined with other readability features (Schwarm
and Ostendorf, 2005).
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