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Abstract

The lexical semantic relationships between
word pairs are key features for many NLP
tasks. Most approaches for automatically clas-
sifying related word pairs are hindered by data
sparsity because of their need to observe two
words co-occurring in order to detect the lexi-
cal relation holding between them. Even when
mining very large corpora, not every related
word pair co-occurs. Using novel representa-
tions based on graphs and word embeddings,
we present two systems that are able to predict
relations between words, even when these are
never found in the same sentence in a given
corpus. In two experiments, we demonstrate
superior performance of both approaches over
the state of the art, achieving significant gains
in recall.

1 Introduction

Resources containing lexical-semantic relations
such as hypernymy or meronymy have proven use-
ful in many NLP tasks. While resources such as
WordNet (Miller, 1995) contain many general rela-
tions and subsequently have seen widespread adop-
tion, developing this type of rich resource for new
languages or for new domains is prohibitively costly
and time-consuming. Therefore, automated ap-
proaches are needed and, in order to create such
a lexical-semantic database, a first step is to de-
velop accurate techniques for classifying the type of
lexical-semantic relationship between two words.

Approaches to classifying the relationship be-
tween a word pair have typically relied on the as-
sumption that contexts where word pairs co-occur

will yield information on the semantic relation (if
any) between them. Given a set of example word
pairs having some relation, relation-specific pat-
terns may be automatically acquired from the con-
texts in which these example pairs co-occur (Tur-
ney, 2008b; Mintz et al., 2009). Comparing these
relation-specific patterns with those seen with other
word pairs measures relational similarity, i.e., how
similar is the relation holding between two word
pairs. However, any classification system based on
patterns of co-occurrence is limited to only those
words co-occurring in the data considered; due to
the Zipfian distribution of words, even in a very large
corpus there are always semantically related word
pairs that do not co-occur. As a result, these pattern-
based approaches have a strict upper-bound limit
on the number of instances that they can classify.
As an alternative to requiring co-occurrence, other
works have classified the relation of a word pair us-
ing lexical similarity, i.e., the similarity of the con-
cepts themselves. Given two word pairs, (w1, w2)
and (w3, w4), if w1 is lexically similar to w3 and
w2 to w4 (i.e., are pair-wise similar) then the pairs
are said to have the same semantic relation. These
two sources of information are used as two indepen-
dent units: relational similarity is calculated using
co-occurrence information; lexical similarity is cal-
culated using distributional information (Snow et al.,
2004; Séaghdha and Copestake, 2009; Herdadelen
and Baroni, 2009), and ultimately these scores are
combined. Experimental evidence has shown that
relational similarity cannot necessarily be revealed
through lexical similarity (Turney, 2006b; Turney,
2008a), and therefore, the issue of how to collect in-
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formation for word pairs that do not co-occur is still
an open problem.

We propose two new approaches to representing
word pairs in order to accurately classify them as
instances of lexical-semantic relations – even when
the pair members do not co-occur. The first ap-
proach creates a word pair representation based on
a graph representation of the corpus created with
dependency relations. The graph encodes the dis-
tributional behavior of each word in the pair and
consequently, patterns of co-occurrence expressing
each target relation are extracted from it as relational
information. The second approach uses word em-
beddings which have been shown to preserve linear
regularities among words and pairs of words, there-
fore, encoding lexical and relational similarities (Ba-
roni et al., 2014), a necessary property for our task.
In two experiments comparing with state-of-the-art
pattern-based and embedding-based classifiers (Tur-
ney, 2008b; Zhila et al., 2013), we demonstrate that
our approaches achieve higher accuracy with signif-
icantly increased recall.

2 Related work

Initial approaches to the extraction of lexical-
semantic relations have relied on hand-crafted
lexico-syntactic patterns to identify instances of
semantic relations (Hearst, 1992; Widdows and
Dorow, 2002; Berland and Charniak, 1999). These
manually designed patterns are explicit construc-
tions expressing a target semantic relation such as
the pattern X is a Y for the relation of hypernymy.
However, these approaches are limited because a re-
lation may be expressed in many ways, depending
on the domain, author, and writing style, which may
not match the originally identified patterns. More-
over, the identification of high-quality patterns is
costly and time-consuming, and must be repeated
for each new relation type, domain and language.
To overcome these limitations, techniques have been
developed for the automatic acquisition of meaning-
ful patterns of co-occurrence cueing a single target
relation (Snow et al., 2004; Girju et al., 2006; Davi-
dov and Rappoport, 2006).

More recent work focuses on methods for the
classification of word pairs as instances of several
relations at once, based on their relational similarity.
This similarity is calculated using a vectorial rep-

resentation for each pair, created by relying on co-
occurrence contexts (Turney, 2008b; Séaghdha and
Copestake, 2009; Mintz et al., 2009). These repre-
sentations are very sparse due to the scarce contexts
where the members of many word pairs co-occur.
Moreover, many semantically related word pairs do
not co-occur in corpus.

For overcoming these issues, relational similar-
ity was combined with lexical similarity calculated
based on the distributional information of words
(Cederberg and Widdows, 2003; Snow et al., 2004;
Turney, 2006a; Séaghdha and Copestake, 2009; Her-
dadelen and Baroni, 2009). However, (Turney,
2006b; Turney, 2008a) showed that relational sim-
ilarity cannot be improved using the distributional
similarity of words. In contrast with the previous ap-
proaches that took into account lexical and relational
information as a linear combination of lexical and
relational similarity scores, the present work focuses
on introducing word pair representations that merge
and jointly represent types of information: lexical
and relational. In this way, we aim to reduce vector
sparseness and to increase the classification recall.

As a first approach, we use a graph to model the
distributional behavior of words. Other researchers
used graph-based approaches to model corpus in-
formation for the extraction of co-hyponyms (Wid-
dows and Dorow, 2002), hypernyms (Navigli and
Velardi, 2010) or synonyms (Minkov and Cohen,
2012), or for inducing word senses (Di Marco and
Navigli, 2013). Navigli and Velardi (2010) have
the most similar representation to ours, creating a
graph that models only definitional sentences. In
contrast, our objective is to create a general repre-
sentation of the whole corpus that can be used for
classifying instances of several lexical semantic re-
lations. The second approach presented in this pa-
per, relies on word embeddings to create word pair
representations. Extensive experiments have lever-
aged word embeddings to find general semantic rela-
tions (Mikolov et al., 2013a; Mikolov et al., 2013b;
Mikolov et al., 2013c; Levy and Goldberg, 2014b).
Nevertheless, only one work has applied word em-
beddings for classifying instances of a lexical se-
mantic relation, specifically the relation hyponymy-
hypernymy (Fu et al., 2014). This relation is more
complex than other semantic relations tested and
therefore, it is reflected in more than one offset, de-
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pending on the domain of each instance. The present
work uses a machine learning approach to discover
meaningful information for the semantic relations
encoded in the dimensions of the embeddings.

3 Task description

The goal of this work is to classify word pairs as in-
stances of lexical-semantic relations. Given a set of
target semantic relations R = {r1, . . . , rn}, and a
set of word pairs W = {(x, y)1, . . . , (x, y)n}, the
task is to label each word pair (x, y)i with the rela-
tion rj ∈ R holding between its members and out-
putting a set of tuples ((x, y)i, rj). For this task, we
propose two novel representations of word pairs (de-
scribed next), which are each used to train a classi-
fier. Following, in Section 3.1 and Section 3.2 we
describe each representation and then, in Section
3.3, we describe the common classification setup
used with both representations.

3.1 Graph-based Representation Model

The present section introduces a novel word pair
representation model based on patterns of co-
occurrence contexts, and on a graph-based corpus
representation created with dependency relations. A
word pair is represented as a vector of features set
up with the most meaningful patterns of context and
filled in with information extracted from the graph
representation of the corpus. We refer to systems
trained with these graph-based representations as
Graph-based Classification systEm (GraCE).

The novelty of this system stands in the graph-
based representation. Its main advantage is that all
the dependency relations of a target word, extracted
from different sentences, are incident edges to its
corresponding node in the graph. Thus, words that
never co-occur in the same context in corpus, are
linked in the graph through bridging words: words
that appear in a dependency relation with each mem-
ber of the pair but in different sentences. With this
representation we address the data sparsity issue,
aiming to overcome the reported major bottleneck
of previous approaches: low recall because informa-
tion can only be gathered from co-occurrences in the
same sentence of two related words.

Word pair representations are created in three
steps:

(1). Corpus representation: the input corpus is
represented as a graph;

(2). Feature selection: the input corpus is used to
extract meaningful patterns of co-occurrence
for each semantic relation ri starting from an
initial set of examples E;

(3). Word pair representation: the information
acquired in (1) and (2) is used to create
vectorial representations of target word pairs.

Next, we present an example of how the graph repre-
sentation of the corpus addresses the sparsity prob-
lem in distributional data and formally introduce
each step of the GraCE algorithm.
Example To illustrate the benefit of acquiring in-
formation about a word pair from the graph instead
of using co-occurrence information, let us consider
that, given the sentences (S1) and (S2) below, we
want to classify the pair (chisel, tool) as an instance
of the relation of hypernymy.
(S1) The students learned how to handle screwdrivers,

hammers and other tools.
(S2) The carpenter handles the new chisel.
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Figure 1: Dependency multigraph built from a two
sentence corpus using GraCE. See text for details.

The word pair (chisel, tool) has a relation of hy-
pernymy but its members do not co-occur in the
same sentence. However, both words occur as ob-
jects of the verb to handle in different sentences,
just like other hypernym word pairs such as (ham-
mer, tool) and (screwdriver, tool) which do co-occur
in the same sentence. This shows that handle is one
of the contexts shared between these semantically
related words that provide information regarding a
possible semantic relatedness between them. Lever-
aging only the information provided by each sen-
tence, as existing pattern-based approaches do, no
evidence is acquired regarding the semantic relation
holding between chisel and tool. GraCE combines
the dependency relations seen in each sentence in
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the graph shown in Figure 1. In this graph, chisel
and tool are connected by a path passing through the
bridging word handle which shows that both chisel
and tool could co-occur in a sentence as objects of
the verb to handle, although they do not in the ex-
ample two-sentence corpus.

Corpus representation The goal of the first step
is to generate a graph connecting semantically asso-
ciated words using observed dependency relations.

Formally, the corpus is represented as a graph
G = (V,E), where V is a set of POS-tagged lem-
mas in a corpus and E is the set of dependency re-
lations connecting two lemmas from V in the cor-
pus. From each parsed sentence of the corpus, a
set of dependency relations linking the words in
it is produced: D = {d1 . . . , d|D|}, where d =
(wi, dep, wj) and wi, wj and dep denote POS-
tagged lemmas and a dependency relation, respec-
tively. The graph G is created using all the depen-
dency relations from D.

The output of this step is a multigraph, where two
words are connected by the set of edges containing
all the dependency relations holding between them
in the corpus.

Feature Selection The goal of the second step
is to collect features associated with each relation
r from the parsed input corpus. Similarly to the
work of Snow et al. (2004), our features are pat-
terns of co-occurrence contexts created with depen-
dency paths. For acquiring patterns of co-occurrence
contexts for each relation r, we use the set of la-
beled examples E, assuming that all the contexts in
which a word pair (x, y)i ∈ E co-occurs provide
information about the relation r holding between
its members. All the dependency paths between x
and y up to three edges are extracted from the de-
pendency graph of each sentence where (x, y)i co-
occur.1 For example, ((hammerN , toolN ), hyper)
is an instance of the relation of hypernymy. In
the dependency graph of sentence (S1), the words
hammerN (hyponym) and toolN (hypernym) are
connected by the dependency path hammerN

obj←−−
handleV

obj−−→ toolN . This path is converted into
a pattern of co-occurrence contexts by replacing the
seeds in the path with their parts of speech as fol-

1Paths with more than three edges commonly connect
semantically-unrelated portions of a sentence and therefore are
not beneficial for the purposes of relation classification.

attribute XN
prep such as−1−−−−−−−−−→ toolN

mod−−−→ YJ

co-hyponymy XN
obj−1−−−−→ useV

obj−−→ YN

action XN
obj−1−−−−→ useV

conj−−−→ YV

hypernymy XN
prep such as−1−−−−−−−−−→ toolN

conj−−−→ YN

meronymy XN
nn−1−−−−→ bladeN

conj−−−→ YN

Table 1: Examples of relation features

lows: N obj←−− handleV
obj−−→ N . Table 1 illustrates

several examples of pattern of co-occurrence con-
texts.

For the word pairs vectorial representation, the
top 5000 most meaningful patterns are considered in
the final set of patterns P to form a feature space.2

In order to rank the patterns, the tf-idf score is cal-
culated for each pattern with respect to each lexi-
cal semantic relation. Here, tf − idf is defined as
maxj(

log(uniq(pi,rj)+1)∗|R|
|Rp| ), where pi is a pattern of

co-occurrence, uniq(pi, rj) is the number of unique
instances of the relation rj occurring in the pattern
pi and |Rp| is the number of relations rj whose ex-
ample instances are seen occurring in the pattern pi.
Each pattern is then associated with the highest tf-idf
score obtained across all relations.
Word pair representations Using the graph
model G and the set of contextual patterns auto-
matically acquired P, each word pair (x, y) is rep-
resented as a binary distribution over each pattern
from P. Rather than using the input corpus to iden-
tify contexts of occurrence for the word pair (x, y)
and match those with the acquired patterns, GraCE
uses paths connecting x and y inG. All the paths be-
tween x and y up to three edges are extracted from
G. These paths are then matched against the fea-
ture patterns from P and the word pair (x, y) is rep-
resented as a binary vector encoding non-zero val-
ues for all the features matching the pair’s paths
extracted from G, and zero otherwise.3 Because
the graph contains combinations of multiple depen-
dency relations, extracted from various sentences,
paths not observed in the corpus can be found in the
graph.

2Initial experiments tested different amounts of patterns us-
ing held out data and the best results were obtained with the top
5000 patterns.

3Binary weights are used because the feature values are de-
rived observing paths in the graph, which is a generalization of
the corpus; because not all paths in the graph are observed in the
corpus, weighting based on path frequency would encounter the
same data sparsity issue that the graph is intended to overcome.
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3.2 Word Embeddings Representations

The present section introduces two word pair repre-
sentations based on word embeddings. We refer to a
system based on embeddings as Word Embeddings
Classification systEm (WECE). An embedding is a
low-dimensional vectorial representation of a word,
where the dimensions are latent continuous features
and vector components are set to maximize the prob-
ability of the contexts in which the target word tends
to appear. Since similar words occur in similar
contexts the word embeddings learn similar vec-
tors for similar words. Moreover, the vector offset
of two word embeddings reflect the relation hold-
ing between them. For instance, Mikolov et al.
(2013c) give the example that v(king)− v(man) ≈
v(queen) − v(women), where v(x) is the embed-
ding of the word x, indicating the vectors are encod-
ing information on the words’ semantic roles.

For learning word embeddings, we used the Skip-
gram model, improved with techniques of negative
sampling and subsampling of frequent words, which
achieved the best results for detecting semantically
similar words (Mikolov et al., 2013a; Mikolov et
al., 2013b). Moreover, for a fair comparison with
the GraCE system, developed with dependency re-
lations, we also tested the results obtained with
a dependency-based Skip-gram model (Levy and
Goldberg, 2014a). Words occurring only once in
corpus are filtered out and 200-dimensional vectors
are learned.

Two embedding-based representations are consid-
ered for a relation: WECEoffset leverages the offset
of the word embeddings, while WECEconcat concate-
nates the embeddings, both described next.

WECEoffset Representation Mikolov et al.
(2013c) shows that the vectorial representation
of words provided by word embeddings captures
syntactic and semantic regularities and that each
relationship is characterized by a relation specific
vector offset. Word pairs with similar offsets
can be interpreted as word pairs with the same
semantic relation. Therefore, given a target word
pair (x, y), the vectorial representation is calcu-
lated from the difference between its vectors, i.e.,
v((x, y)) = v(x) − v(y). Note that this operation
is dependent on the order of the arguments and is
therefore potentially able to capture asymmetric

relationships.

WECEconcat Representation A novel word pair
representation is proposed to test if the information
encoded directly in the embeddings reflects the se-
mantic relation of the word pair.

A word pair is represented by concatenating the
vectorial representation of its members. Formally,
given a word pair (x, y), whose members vecto-
rial representations are v(x) = (x1, x2, . . . , xn),
and v(y) = (y1, y2, . . . , yn) respectively, the vec-
torial representation of (x, y) is defined as the
concatenation of v(x) and v(y): v((x, y)) =
(x1, x2, . . . , xn, y1, y2, . . . , yn) Consequently the
length of v((x, y)) is 2n, where n is the dimension
of the embedding space.

3.3 Relation Classification
For both representations, a supervised classifier is
trained. Given a set of tuples E = ((x, y)i, ri)
of example instances for each relation ri ∈ R, a
support vector machine (SVM) multi-class classifier
with a radial basis function kernel (Platt, 1999) is
trained using WEKA (Hall et al., 2009) to classify
each word pair based on its representation provided
by a graph-based representation model (Section 3.1)
or a word embeddings representation model (Sec-
tion 3.2) for N different lexical relations. The SVM
classifier generates a distribution over relation labels
and the highest weighted label is selected as the rela-
tion holding between the members of the word pair.

4 Experiments

While several datasets have been created for detect-
ing semantic relations between two words in con-
text (Hendrickx et al., 2010; Segura-Bedmar et al.,
2013), in our work we focus on the classification of
word pairs as instances of lexical-semantic relations
out of context. The performance of the GraCE and
WECE systems is tested across two datasets, focus-
ing on their ability to classify instances of specific
lexical-semantic relations as well as to provide in-
sights into the systems’ generalization capabilities.

4.1 Experimental Setup
Corpora Many pattern-based systems increase the
size of the input corpus in an attempt to overcome
data sparsity and to achieve a better recall. There-
fore, in our experiments, we train our systems using
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two corpora of different sizes: the British National
Corpus (BNC), a 100 million-word corpus, and a
Wikipedia dump created from 5 million pages and
containing 1.5 billion words. The size difference al-
lows us to measure the potential impact of increased
word co-occurrence on recall. Both corpora were
initially parsed with the Stanford dependency parser
in the collapsed dependency format (Manning et al.,
2014).

Embbedings WECEoffset and WECEconcat are
implemented based on a bag-of-words (BoW)
(Mikolov et al., 2013a) and based on dependency
relations (Dep) (Levy and Goldberg, 2014a).

Evaluation We compare each system by reporting
precision (P), recall (R) and F1 measure (F).

4.2 Comparison Systems

The two proposed models are compared with two
state-of-the-art systems and one baseline system.

PAIRCLASS The PairClass algorithm (Turney,
2008b) provides a state-of-the-art pattern-based ap-
proach for extracting and classifying the relation-
ship between word pairs and has performed well for
many relation types. Using a set of seed pairs (x, y)
for each relation, PairClass acquires a set of lexical
patterns using the template [0 to 1 words] x [0 to 3
words] y [0 to 1 words]. Using the initial set of lex-
ical patterns extracted from a corpus, additional pat-
terns are generated by optionally generalizing each
word to its part of speech. For N seed pairs, the most
frequent kN patterns are retained. We follow Tur-
ney (2008b) and set k = 20. The patterns retained
are then used as features to train an SVM classifier
over the set of possible relation types.

DSZhila & DSLevy Word embeddings have previ-
ously been shown to accurately measure relational
similarity; Zhila et al. (2013) demonstrate state-of-
the-art performance on SemEval-2012 Task 2 (Jur-
gens et al., 2012) which measures word pair similar-
ity within a particular semantic relation (i.e., which
pairs are most prototypical of a semantic relation).
This approach can easily be extended to the clas-
sification setting: Given a target word pair (x, y),
the similarity is computed between (x, y) and each
word pair (x, y)i of a target relation r. The av-
erage of these similarity measurements was taken

as the final score for each relation r.4 Finally, the
word pair is classified as an instance of the rela-
tion with the highest associated score. Two types
of embeddings are used, (a) the word embeddings
produced using the method of Mikolov et al. (2011),
which was originally used in Zhila et al. (2013) and
(b) the embeddings using the method of Levy and
Goldberg (2014a), which include dependency pars-
ing information. We refer to these as DSZhila and
DSLevy, respectively. The inclusion of this sys-
tem enables comparing the performance impact of
using an SVM classifier with our embedding-based
pair representations versus classifying instances by
comparing the embeddings themselves. We note a
DS system represents a minimally-supervised sys-
tem whose features are produced in an unsupervised
way (i.e., through the embedding process) and are
therefore not necessarily tuned for the task of rela-
tion classification; however, such embeddings have
previously been shown to yield state-of-the-art per-
formance in other semantic relation tasks (Baroni et
al., 2014) and therefore the DS systems are intended
to identify potential benefits when adding feature se-
lection by means of the SVM in WECE systems.

BASELINE The purported benefit of the GraCE
model is that the graph enables identifying syntac-
tic features between pair members that are never ob-
served in the corpus, which increases the number of
instances that can be classified without sacrificing
accuracy. Therefore, to quantify the effect of the
graph, we include a baseline system, denoted BL,
that uses an identical setup to GraCE but where the
feature vector for a word pair is created only from
the dependency path features that were observed in
the corpus (as opposed to the graph). Unlike the
GraCE model which has binary weighting (due to
the graph properties), the baseline model’s feature
values correspond to the frequencies with which pat-
terns occur; following common practice, the values
are log-normalized.

4.3 Experiment 1

Both of the proposed approaches rest on the hypoth-
esis that the graph or embeddings can enable accu-
rate pair classification, even when pairs never co-

4Additional experiments showed that using alternate ways
of measuring similarity, such as using the maximum similarity
for any instance of r, attained similar results.
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Domain #Co-hypo #Hyper #Mero
Animals 8038 (92.4%) 3039 (97.2%) 386 (89.1%)
Plants 18972 (95.5%) 1185 (97.4%) 330 (82.4%)
Vehicles 530 (82.6%) 189 (97.9%) 455 (100%)

Table 2: Distribution of K&H dataset, with the % of
instances which occur in the corpora.

BNC Wikipedia
P R F P R F

PairClass 76.9 4.6 8.7 77.0 11.7 20.4
BL 82.6 7.7 14.2 89.4 16.2 27.5
GraCE 90.7 43.8 59.0 94.0 75.5 83.7
DSZhila 31.6 15.7 21.0 32.8 22.6 26.8
DSLevy 18.7 11.4 14.2 27.7 15.6 20.0
WECEBoW

offset 96.0 59.1 73.1 96.8 87.7 92.0
WECEBoW

concat 97.4 60.0 74.2 97.6 89.3 93.2
WECEDep

offset 87.9 63.1 73.5 95.4 86.1 90.5
WECEDep

concat 93.1 64.7 76.4 96.7 88.4 92.4

Table 3: Aggregated results obtained for the in-
domain setup with the K&H dataset. Detailed results
are presented in the Appendix A.

occur in text. Therefore, in the first experiment,
we test whether the recall of classification systems
is improved when the word pair representation en-
codes information about lexical and relational sim-
ilarity. As an evaluation dataset, we expand on the
dataset of Kozareva and Hovy (2010) (K&H), which
was collected from hyponym-hypernym instances
from WordNet (Miller, 1995) spanning three topi-
cal domains: animals, plants and vehicles. Because
our systems are capable of classifying instances with
more than one relation at once, we enhance this
dataset with instances of two more relation types:
co-hyponymy and meronymy. Co-hyponyms are ex-
tracted directly from the K&H dataset: two words
are co-hyponyms if they have the same direct ances-
tor.5 To avoid including generic nouns, such as “mi-
grator” in the “animal” domain, only leaf nodes are
considered. The meronym instances are extracted
directly from WordNet. The final dataset excludes
multi-word expressions, which were not easily han-
dled by any of the tested systems. The total number
of instances considered in our experiments is pre-
sented in Table 2.
Results Table 3 presents the average of the results
obtained by the systems when tested in-domain in

5y is a direct ancestor of x if there is no other word z which
is hypernym of x and hyponym of y.

a 10-fold cross-validation setup. For the in-domain
setup, only instances from one domain are used for
training and testing.

As expected, all the systems gain recall with a
larger corpus, like Wikipedia, showing that the recall
depends on the size of that corpus when a system ac-
quires its distributional information directly from the
input corpus and thus is dependent on the word pairs
co-occurring. Indeed, in the BNC, only 19.4% of the
K&H instances never co-occur, while in Wikipedia
–a corpus 15 times larger than BNC– the number
of co-occurrences rises only to 30.7%, demonstrat-
ing the challenge of classifying such pairs. There-
fore, the real upper-bound limit for these types of
systems is the amount of word pairs co-occurring in
the same sentence in the corpus. The recall achieved
by GraCE overcomes this limitation of pattern-based
systems: 40% and 78.7% of the instances that never
co-occur in BNC and in Wikipedia, respectively, are
correctly classified by GraCE. This ability causes
GraCE to improve the BL performance by 8.1 points
in precision and 36.1 points in recall on BNC and 4.6
points in precision and 59.3 in recall on Wikipedia.
Given that the BL system is constructed identically
to GraCE but without using a graph, these results
demonstrate the performance benefit of joining the
distributional information of a corpus into a graph-
based corpus representation.

Analyzing the false negatives of the GraCE clas-
sifier, we observe that even relying on a graph-
based corpus representation to extract the distribu-
tional information of a word pair, many errors are
still caused by the sparsity of their vectorial repre-
sentation. For the word pairs that do not co-occur in
the same sentence, the GraCE vector representations
of correctly-classified pairs have a median of eight
non-zero features, indicating that the graph was ben-
eficial for still providing evidence of a relationship;
in contast, incorrectly-classified pairs had a median
of only three non-zero features, suggesting that data
sparisity is still major contributor to classification er-
ror.

By combining all the distributional information
into a denser vector, WECE systems are able to im-
prove upon GraCE’s results by an average of 2.9
points in precision and 17.9 points in recall. WECE
results see an increase by 62 points in precision and
46 in recall over DSZhila which used the same em-
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beddings, highlighting the importance of the SVM
classifier for learning which features of the embed-
dings reflect the lexical relation. Although embed-
dings have been argued to reflect the semantic or
syntactic relations between two words (Mikolov et
al., 2013c), our results suggest that additional ma-
chine learning (as done with WECEoffset) is needed
to identify which dimensions of the embeddings ac-
curately correspond to specific relationships. Be-
tween the WECE systems, WECEconcat achieves
slightly better results on the K&H dataset.

4.4 Experiment 2

In the first experiment, the proposed systems were
compared to test the importance of having a repre-
sentation that includes information about lexical and
relational similarities for the classifier to generalize
and to gain recall. Therefore, as further validation, a
second experiment is carried out, where the systems
have to classify word pairs from a different domain
than the domains in the training set. The objective is
to assess the importance of the domain-aware train-
ing instances for the classification.

The K&H dataset contains only instances from
three domains and is imbalanced between the num-
ber of instances across domains and relation types.
Therefore, our second experiment tests each method
on the BLESS dataset (Baroni and Lenci, 2011),
which spans 17 topical domains and includes five
relation types, the three in K&H and (a) attributes of
concepts, a relation holding between nouns and ad-
jectives, and (b) actions performed by/to concepts a
relation holding between nouns and verbs. In total,
the BLESS dataset contains 14400 positive instances
and an equal number of negative instances. This ex-
periment measures the generalizability of each sys-
tem and tests the capabilities of the systems for
lexical-semantic relation types other than taxonomic
relations.

Domain-aware training instances To show the
importance of the domain-aware training instances,
the average results of the systems obtained for the
in-domain setup across the BLESS dataset are com-
pared with the average results obtained when the
systems are trained out-of-domain. For the out-of-
domain setup, one domain is left out from the train-
ing set and used for testing. The experiment was
repeated for each domain and the average results are

In-domain Out-of-domain
P R F P R F

PairClass 66.8 35.6 46.4 78.9 43.2 55.8
BL 79.5 51.6 62.6 71.7 40.0 51.4
GraCE 87.7 85.0 86.3 66.2 36.3 46.9
DSZhila 62.1 47.4 53.7 50.7 46.9 48.7
DSLevy 53.0 49.2 51.0 51.1 47.5 49.2
WECEBoW

offset 90.0 90.9 90.4 68.0 66.9 67.5
WECEBoW

concat 89.9 91.0 90.4 83.8 57.0 67.8
WECEDep

offset 85.3 86.5 85.9 68.7 62.3 65.4
WECEDep

concat 85.9 87.0 86.5 78.2 63.8 70.3

Table 4: Aggregated results obtained when systems
are tested with the BLESS dataset over BNC.

Figure 2: F1 scores distribution across domains for
each proposed system and relation type over BNC
corpus.

presented in Table 4. In this experiment, the systems
are tested over the BNC corpus to show the capabil-
ities of the systems to classify out-of-domain in a
more reduced corpus.

Results When no examples from a domain are
provided, a general significant decrease in perfor-
mance is observed. The GraCE performance de-
creases 39.4 points in F1, while the WECE systems
decrease 20.55 points in average.

The results obtained show that when the instances
to be classified are less homogeneous, i.e. when
the instances belong to different domains, none of
the systems can achieve the level of performance
reported for the in-domain setup. These were the
expected results for the GraCE system due to the
lexical features that it uses and which are domain
dependent. However, the WECE systems are also
affected by this lack of domain-aware training in-
stances. WECEconcat results decrease because sim-
ilar embeddings are associated with similar words.
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When two words belong to two different topical do-
mains, their embeddings are less similar and, there-
fore, the SVM system cannot learn distinctive fea-
tures for each lexical-semantic relation.

In-domain results per relation type In this work
we are interested in creating a general approach for
the classification of any lexical semantic relation in-
stances. Figure 2 shows the box and whisker plot of
the results obtained per relation type across domains
in the in-domain setup over the BNC corpus.

Discussion The results confirm that the proposed
systems achieve satisfactory results across all the
relations, the median of the results being around
90 points in F1. The most accurate system is
WECEbow, which supports the assertion by Levy
and Goldberg (2014a) that bag-of-word embeddings
should offer superior performance to dependency-
based embeddings on task involving semantic rela-
tions. Carrying out an error analysis, the lowest re-
sults of the WECE systems are obtained in the do-
mains with the fewest training instances, making ap-
parent that word embedding systems are dependent
on the number of training instances. For these do-
mains, GraCE achieves better results.

5 Conclusions

In this paper we have presented two systems for clas-
sifying the lexical-semantic relation of a word pair.
Both are designed to address the challenge of data
sparsity, i.e., classifying word pairs whose mem-
bers never co-occur, in order to improve classifica-
tion recall. The two main contributions are the word
pair vectorial representations, one based on a graph-
based corpus representation and the other one based
on word embeddings. We have demonstrated that
by including information about lexical and relational
similarity in the word pair vectorial representation,
the recall of our systems increases, overcoming the
upper-bound limit of state-of-the-art systems. Fur-
thermore, we show that our systems are able to clas-
sify target word pairs into multiple lexical seman-
tic relation types, beyond the traditional taxonomic
types. In future work, we plan to analyze the prop-
erties of the instances that can be classified with the
GraCE system but not with the WECE systems.
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Appendix

A Full Classifier Results

BNC Wikipedia
P R F P R F

P
ai
rC

la
ss

C 84.1 3.6 6.9 92.4 9.3 16.8
H 79.7 10.1 17.9 75.6 26.1 38.8
M 38.6 8.5 14.0 23.9 15.5 18.8
* 76.9 4.6 8.7 77.0 11.7 20.4

B
L

C 84.4 5.6 10.4 88.8 13.8 23.9
H 82.4 20.1 32.3 92.7 31.9 47.5
M 69.4 12.8 21.6 77.3 14.5 24.4
* 82.6 7.7 14.2 89.4 16.2 27.5

G
ra

C
E

C 90.9 43.7 59.0 94.2 78.7 85.7
H 90.5 48.9 63.5 93.2 67.8 78.5
M 87.5 26.3 40.4 91.8 28.7 43.7
* 90.7 43.8 59.0 94.0 75.5 83.7

D
S

C 97.2 8.0 14.8 95.5 11.5 20.5
H 28.2 58.6 38.1 29.1 85.4 43.4
M 8.4 36.4 13.7 8.5 48.0 14.5
* 31.6 15.7 21.0 32.8 22.6 26.8

D
S
D

ep
C 82.0 2.6 5.0 84.0 5.2 9.8
H 20.7 62.7 31.1 21.8 80.7 34.4
M 5.1 26.1 8.6 11.3 43.6 17.9
* 18.7 11.4 14.2 27.7 15.6 20.0

W
E
C
E
B

ow

of
f
se

t C 95.9 60.4 74.1 96.6 89.7 93.0
H 98.1 56.5 71.7 98.9 85.3 91.6
M 88.6 38.3 53.5 90.8 51.2 65.4
* 96.0 59.1 73.1 96.8 87.7 92.0

W
E
C
E
B

ow

co
n
ca

t C 98.2 60.6 74.9 98.5 89.8 93.9
H 96.0 60.1 73.9 97.1 91.3 94.1
M 81.1 45.9 58.7 77.9 68.6 72.9
* 97.4 60.0 74.2 97.6 89.3 93.2

W
E
C
E
D

ep

of
f
se

t C 87.0 66.5 75.4 95.1 88.1 91.5
H 96.6 51.9 67.5 98.1 84.3 90.7
M 83.1 26.4 40.1 88.2 44.7 59.3
* 87.9 63.1 73.5 95.4 86.1 90.5

W
E
C
E
D

ep

co
n
ca

t C 94.0 66.7 78.0 98.0 89.2 93.4
H 93.1 60.2 73.1 95.5 90.3 92.8
M 67.0 35.8 46.7 69.5 62.0 65.6
* 93.1 64.7 76.4 96.7 88.4 92.4

Table 5: Detailed results for each relation tested, co-
ordination (C), hypernymy (H) and meronymy (M),
and the aggregated results (*) obtained with K&H
dataset over BNC and Wikipedia.
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