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Abstract

We induce semantic association networks
from translation relations in parallel corpora.
The resulting semantic spaces are encoded in
a single reference language, which ensures
cross-language comparability. As our main
contribution, we cluster the obtained (cross-
lingually comparable) lexical semantic spaces.
We find that, in our sample of languages,
lexical semantic spaces largely coincide with
genealogical relations. To our knowledge,
this constitutes the first large-scale quantita-
tive lexical semantic typology that is com-
pletely unsupervised, bottom-up, and data-
driven. Our results may be important for the
decision which multilingual resources to inte-
grate in a semantic evaluation task.

1 Introduction

There has been a recent surge of interest in integrat-
ing multilingual resources in natural language pro-
cessing (NLP). For example, Snyder et al. (2008)
show that jointly considering morphological seg-
mentations across languages improves performance
compared to the monolingual baseline. Bhargava
and Kondrak (2011) and Bhargava and Kondrak
(2012) demonstrate that string transduction can ben-
efit from supplemental information provided in other
languages. Analogously, in lexical semantics, Nav-
igli and Ponzetto (2012) explore semantic relations
from Wikipedia in different languages to induce a
huge integrated lexical semantic network.

In this paper, we also focus on multilingual re-
sources in lexical semantics. But rather than inte-
grating them, we investigate their (dis-)similarities.
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More precisely, we cluster (classify) languages
based on their semantic relations between lexical
units. The outcome of our classification may have
direct consequences for approaches that integrate di-
verse multilingual resources. For example, from a
linguistic point of view, it might be argued that in-
tegrating very heterogeneous/dissimilar semantic re-
sources is harmful, e.g., in a monolingual semantic
similarity task, because semantically unrelated lan-
guages might contribute semantic relations unavail-
able in the language for which semantic similarity is
computed. Alternatively, from a statistical point of
view, it might be argued that integrating heteroge-
neous/dissimilar resources is beneficial due to their
higher degree of uncorrelatedness. In any case, ei-
ther of these implications necessitates knowledge of
a typology of lexical semantics.

In order to address this question, we provide a
translation-based model of lexical semantic spaces.
Our approach is to generate association networks in
which the weight of a link between two words de-
pends on their degree of partial synonymy. To mea-
sure synonymy, we rely on translation data that is
input to a statistical alignment toolkit. We define the
degree of synonymy of two words to be proportional
to the number of common translations in a reference
language, weighted by the probability of translation.
By pivoting on the reference language, we represent
semantic associations among words in different lan-
guages by means of the synonymy relations of their
translations in the same target language. This ap-
proach ensures cross-language comparability of se-
mantic spaces: Greek and Bulgarian are compared,
for example, by means of the synonymy relations
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that are retained when translating them into the same
pivot language (e.g., English).

This approach does not only address proximities
of pairs of words shared among languages (e.g.,
MEAT and BEEF, MOUTH and DOOR, CHILD and
FRUIT — cf. Vanhove et al. (2008)). By averaging
over word pairs, it also allows for calculating seman-
tic distances between pairs of languages.

The Sapir-Whorf Hypothesis (SWH) (Whort,
1956) already predicts that semantic relations are
not universal. Though we are agnostic about
the assumptions underlying the SWH, it neverthe-
less gives an evaluation criterion for our experi-
ment: if the SWH is true, we expect a clustering
of translation-based semantic spaces along the ge-
nealogical relationships of the languages involved.
However, genealogy is certainly not the sole prin-
ciple potentially underlying a typology of lexical
semantics. For example, Cooper (2008) finds that
French is semantically closer to Basque, a putatively
non-Indoeuropean language, than to German. To
the best of our knowledge, a large-scale quantitative
typological analysis of lexical semantics is lacking
thus far and we intend to make first steps towards
this target.

The paper is structured as follows. Section 2 out-
lines related work. Section 3 presents our formal
model and Section 4 details our experiments on clus-
tering semantic spaces across selected languages of
the European Union. We conclude in Section 5.

2 Related work

A field related to our research is semantic related-
ness, in which the task is to determine the degree
of semantic similarity between pairs of words, such
as tiger and cat, sex and love, etc. Classically, se-
mantic word networks such as WordNet (Fellbaum,
1998) or EuroWordNet (Vossen, 1998) have been
used to address this problem (Jiang and Conrath,
1997), and, more recently, taxonomies and knowl-
edge bases such as Wikipedia (Strube and Ponzetto,
2006). Hassan and Mihalcea (2009) define the
task of cross-lingual semantic relatedness, in which
the goal is to determine the semantic similarity be-
tween words from different languages, and Navigli
and Ponzetto (2012) have combined WordNet with
Wikipedia to construct a multi-layer semantic net-
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work in which computation of cross-lingual seman-
tic relatedness may be performed. Most recently,
neural network-based distributed semantic represen-
tations focusing on cross-language similarities be-
tween words and larger textual units have become
popular (Chandar A P et al. (2014), Hermann and
Blunsom (2014), Mikolov et al. (2013)).

There have been (a) few different computa-
tional approaches to semantic language classifica-
tion. Mehler et al. (2011) test whether languages
are genealogically separable via topological prop-
erties of semantic (concept) graphs derived from
Wikipedia. This approach is top-down in that it as-
sumes that the genealogical tree is the desired out-
put of the classification. Cooper (2008) computes
semantic distances between languages based on the
curvature of translation histograms in bilingual dic-
tionaries. While this results in some interesting find-
ings as indicated, the approach is not applied to lan-
guage classification, but focuses on computing se-
mantically similar languages for a given query lan-
guage. Vanhove et al. (2008) construct so-called
semantic proximity networks based on monolingual
dictionaries, and envision to use them for semantic
typologies. They do not apply their methodology to
the multilingual setup, however, which a typology
necessitates.

Orthographic, phonetic and syntactic similar-
ity of languages have received considerably more
attention than semantic similarity, as we focus
on. Classical approaches in determining ortho-
graphic/phonetic relatedness of languages are based
on lexico-statistical comparisons of items in stan-
dardized word lists (Campbell, 2003; Rama and
Borin, 2015), such as the Swadesh lists (Swadesh,
1955). Rama and Borin (2015) study the impact of
different string similarity measures on orthographic
language classification. Ciobanu and Dinu (2014)
measure orthographic similarity between Romanian
and related languages. They also indicate applica-
tions of (knowledge of) similarity values between
languages, such as serving as a guide for machine
translation (Scannell, 2006). Koehn (2005) pro-
duces a genealogical clustering of the languages in
Europarl based on ease of translation, as measured in
BLEU scores, between any two languages (which,
putatively, yields a syntactic similarity indication).
This results in an imperfect reproduction of the ge-
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Figure 1: Excerpts of bilingual dictionaries as bi-
partite graphs with links between words if and only
if one is a translation of the other. Data from
www.latin-dictionary.net and dict.leo.org.

nealogical language tree for the languages involved.

3 Model

We start with motivating our approach by example
of bilingual dictionaries before we formally gener-
alize it in terms of probabilistic translation relations.
Bilingual dictionaries, or the bipartite graphs that
represent them (cf. Figure 1), induce lexical seman-
tic association networks in any of the languages in-
volved by placing a link between two words of the
same language if and only if they share a common
translation in the other language (cf. Figure 2).

Since translations provide partially synonymous
expression in the target language, the latter links can
be seen to denote semantic relatedness (in terms of
synonymy) of the interlinked words. Further, the
more distant two words in such a lexical semantic
association network, the lower the degree of their
partial synonymy: the longer the path from one word
to another, the higher the loss of relatedness among
them (cf. Eger and Sejane (2010)).

Note that association networks derived from bilin-
gual dictionaries represent semantic similarities of
words of the source language R subject to semantic
relations of their translations in the target language
L. The reason is that whether or not a link is es-
tablished between two words v and 3 in R depends
on associations of their translations present in L. To
illustrate this, consider the association networks out-
lined in Figure 2, induced from the bilingual dictio-
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naries outlined in Figure 1, which match between
R = English and L = Latin and . = German, re-
spectively. When L is classical Latin, the semantic
field centered around (the English word) MAN is par-
tially different from the semantic field around MAN
when L is German. For example, under L = Latin,
MAN is directly linked with HERO and WARRIOR (in-
directly with DEMIGOD) — these semantic associa-
tions are not present when German is the language
L.

By fixing R and varying L, we can create different
lexical semantic association networks, each encoded
in language R, and each representing the semantic
relations of L.! Analyzing and contrasting such net-
works may then allow for clustering languages due
to shared lexical semantic associations.

As mentioned above, we generalize the model
outlined so far to the situation of probabilistic trans-
lation relationships derived from corpus data, rather
than from bilingual dictionaries. Working on corpus
data has both advantages and disadvantages com-
pared to using human compiled and edited dictio-
naries. On the one hand,

e the translation relations induced from corpus
data are noisy since their estimation is par-
tially inaccurate due to limitations of alignment
toolkits such as GIZA++ (Och and Ney, 2003)
as employed by us. Implications of this inaccu-
racy are outlined below.

e By using unannotated corpora, we cannot
straightforwardly distinguish between cases
of polysemy and homonymy. The problem
is that homonymy should (ideally) not con-
tribute to generating lexical semantic associa-
tion networks as considered here. However,
homonymy is apparently a rather rare phe-
nomenon, while polysemy, which we expect to
underlie the structure of our networks, is abun-
dant (cf. Lobner (2002)).

On the other hand,

e classical dictionaries can be very heteroge-
neous in their scope and denomination of trans-
lation links between words (see, e.g., Cooper
(2008)), making the respective editors of the
bilingual dictionaries distorting variables.

"Each network represents the semantic relations of both lan-

guages R and L, but since we keep R fixed and vary L, each
association network inherits the same properties from R.



e Corpus data allows for inducing probabilities of
translation relations of words, which indicate
weighted links more accurately than ranked as-
signments provided by classical dictionaries.

e Corpus data allows for dealing with real lan-
guage use by means of comparable excerpts of
natural language data.

Network generation Assume that we are given
different natural languages Li,...,Lp;, R and
bilingual translation relations that map from lan-
guage Lj to language R, forall 1 < k < M. We
call the language R reference language.”> In our
work, we assume that the translation relations are
probabilistic. That is, we assume that there exist
probabilistic ‘operators’ Py that indicate the prob-
abilities — denoted by Pj[a|z] — by which a word
z of language L translates into a word « of lan-
guage R. Our motivation is to induce M differ-
ent lexical semantic networks that represent the lex-
ical semantic spaces of the languages L1, ..., Ly,
each encoded in language R, which finally allows
for comparing the semantic spaces of the M differ-
ent source languages. To this end, we define the
weighted graphs Gy, = (Vi, Wy), where the nodes
Vi of G}, are given by the vocabulary RY*° of lan-
guage R, i.e. V} = R"°°. We define the weight of an
edge (o, 8) € (RV°°)2 as

Wi(e, 8) = Y Pelalz]PL[B|2]pl2],

ZELY

e))

where p|z]| denotes the (corpus) probability of word
z € Ly®. Since each Gy, is spanned using the same
subset of the vocabulary of the reference language

R, we call it the Lj(-based) network version of R.
Eq. (1) can be motivated by postulating that Wy,
is a joint probability. In this case we can write

Wi(e,8) = > Wi, 8,2) = > Wi(a, Bl2)Wi(2)

zELYe zELYe
~ Y Wilal2)Wi(Bl2)Wi(2),
2ELY*

(@)

where the first equality is marginalization (‘sum-
ming out over the possible states of the world’),
and the third step is an approximation which would

2 Alternative names for the concept we have in mind might,
e.g., be pivot language, tertium comparationis or interlingua.
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be accurate if o and § were conditionally indepen-
dent given z. By inserting the conditional probabil-
ities Py [c|z], Py [3]z] (Whose existence we assumed
above) and the corpus probability p[z] into Eq. (2),
we obtain Eq. (1). Note that in the special case of
a bilingual dictionary of Lj and R, where Pyla|z]
can be defined as 1 or 0 depending on whether « is
a translation of z or not,> Wj(«, 3) is proportional
to the number of words z (in language Ly) whose
translation is both o and (3; i.e., assuming that p[z]
is a constant in this setup, Eq. (1) simplifies to:

> 1.

2€Ly*°:z translates into o and 3

Wk(avﬁ) 8

Clearly, the more common translations two words
have in the target language, the closer their seman-
tic similarity should be, all else being equal.* Eq.
(1) generalizes this interpretation by non-uniformly
‘prioritizing’ the translations of z.

Network analysis In order to compare the net-
work versions Gi,...,Gps of language R that
are output by network generation, we first de-
fine the vector representation of node v* in graph
Gr = (Vi, Wy) as the probability vector of end-
ing up in any of the nodes of GG; when a ran-
dom surfer starts from v* and surfs on the graph
G according to the normalized weight matrix
Wy = [Wi(a, 8)](a,8)evi xv; - Note that the higher
Wi (e, (), the higher the likelihood that the surfer
takes the transition from « to 3. More precisely, we
let the meaning [v*] of node v* in graph G}, be the
vector v¥ that results as the limit of the iterative pro-
cess (see, e.g., Brin and Page (1998), Gaume and
Mathieu (2008), Kok and Brockett (2010)),

Vi = dvi AW + (1 - d)vg,

where each vk, for N > 0,is a 1 x |R"| vector,
A ) is obtained from W, by normalizing all rows
such that A(®) is row-stochastic, and d is a damping
factor that describes preference for the starting vec-
tor vlg , which is a vector of zeros except for index

*More correctly, one could define Py[a|z] = -, whenever
« is a translation of z, and Px[a|z] = 0, otherwise, where f.
is the number of translations of word z. This would lead to an
analogous interpretation as the given one.

“This reasoning ignores cases of homonymy, which weaken
the semantic argument. See our discussion above.



DEMIGOD |—| HERO |~ WARRIOR

HUSBAND

| HUMAN |——— PERSON |

GUY
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| HUMAN |———[ PERSON |

Figure 2: Lexical semantic association networks derived from bilingual dictionaries, given in Figure 1, by
linking two English words if and only if they have a common translation in Latin (left) or German (right).

The node for MAN is highlighted in both networks.

position of word v*, where vlg has value 1.°> Subse-
quently, we can contrast words v and w (or, rather,
their meanings) in the same network version of ref-
erence language R, by considering, for instance, the
cosine similarity or vector distance of their associ-
ated vectors. More generally, we can contrast the
lexical semantic meanings v* and w’ of any two
language R words v and w, across two languages
Ly, and L;, by, e.g., evaluating,

vF.wJ (scalar product, cosine similarity)

or

K _w|| (vector distance).

v
Finally, the lexical semantic distance or similarity
between two languages Ly and L; can be deter-
mined by simple averaging,

D(Ly, Lj) 3)

ZSV v]

v e RVOC

Rvoc |

where S is a distance or similarity function.
Discussion We mentioned above that toolkits
like GIZA++ cannot perfectly estimate transla-
tion relationships between words in different lan-
guages. Thus, we have to face situations of ‘noisily’
weighted links between words in the same network
version of reference language R. Typically, a higher
chance of mismatch occurs in the case of bigrams.
To illustrate, consider the French phrase étres chers
(‘beings loved’/‘loved ones’). Here, GIZA++ typi-
cally assigns positive weight mass to Py [LOVE|étre]

>We always set d to 0.8 in our experiments.
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although, from a point of view of a classical dic-
tionary, translating étre into love is clearly problem-
atic. Since it is likely that, e.g., P [HUMAN |étre| and
Py [BEING|étre] will also be positive, we can expect
weighted links in the French network version of En-
glish between HUMAN and LOVE as well as between
BEING and LOVE. Thus, besides ‘true’ semantic re-
lations, our approach also captures, though uninten-
tionally, co-occurrence relations.

4 Experiments

We evaluate our method by means of the Europarl
corpus (Koehn, 2005). Europarl documents the pro-
ceedings of the European parliament in the 21 offi-
cial languages of the European Union. This provides
us with sentence-aligned multi-texts in which each
tuple of sentences expresses the same underlying
meaning.® Using GIZA++, this allows us to estimate
the conditional translation probabilities P[A|B] for
any two words A, B from any two languages in the
Europarl corpus. In our experiment, we focus on the
approx. 400,000 sentences for which translations in
all 21 languages are available. To process this data,
we set all words of all sentences to lower-case. Ide-
ally, we would have lemmatized all texts, but did not
do so because of the unavailability of lemmatizers
for some of the languages. Therefore, we decided to
lemmatize only words in the reference language and
kept full-forms for all source languages.” We choose

%1n a tuple of sentences, one sentence is the source of which
all the other sentences are translations.

"Lemmatization tools and models are taken from
the TreeTagger (Schmid, 1994) home page www.cis.
uni-muenchen.de/~schmid/tools/TreeTagger



English as the reference language.® In all languages,
we omitted all words whose corpus frequency is less
than 50 and excluded the 100 most frequent (mostly
function) words.? In the reference language, we also
ignored all words whose characters do not belong to
the standard English character set.

Figure 3 shows subgraphs centered around the
seed word WOMAN in five network versions of En-
glish. All subgraphs are constructed using the Eu-
roparl data. Apparently, the network versions of En-
glish diverge from each other. For instance, the se-
mantic association between WOMAN and WIFE ap-
pears to be strongest in the French and in the Spanish
version of English, while in the Finnish version there
does not even exist a link between these nodes. In
contrast, the weight of the link between WOMAN and
LESBIAN is highest in the Czech version of English,
while that between WOMAN and GIRL is strongest
in the Finnish version. All in all, the wiring and the
thickness of links clearly differ across language net-
works, indicating that the languages differ in terms
of semantic relations of their translations.

Table 1 shows network statistics of the graphs Gj.
All network versions of English consist of exactly
5,021 English (lemmatized) words. The networks
show a high cluster value, indicating that neighbors
of a word are probably interlinked (i.e., semantically
related) (cf. Watts and Strogatz (1998)). Average
path lengths and diameters are low, that is, distances
between words are short, as is typically observed
for semantic networks (cf. Steyvers and Tenenbaum
(2005)). The density of the networks (measured by
the ratio of existing links and the upper bound of the-
oretically possible links) varies substantially for the
language networks. For instance, in the Hungarian
network version of English, only 2.56% of the pos-
sible links are realized, while in the Dutch version,
8.45% are present. This observation may hint at the
‘degree of analyticity’ of a language: the more word
forms per lemma there are in a language, the less
likely they are linked by means of Eq. (1).

8Due to the limited availability of lemmatizers, not all lan-
guages could have served as a reference language. Although we
posit that the choice of reference language has no (or minimal)
impact upon the resulting language classification as outlined be-
low, this would need to be experimentally verified in follow-up
work.

The threshold of 50 serves to reduce computational effort.
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# nodes CV GD D density (%)
cs 5,021 039 196 4 451
da 5,021 043 195 5 535
nl 5,021 050 1.85 4 8.45(9.22)
et 5,021 037 198 5 3.81(4.57)
fi 5,021 035 199 4 3.28(6.63)
fr 5,021 044 191 4 6.37(8.23)
de 5,021 043 196 5 5.03(5.81)
el 5,021 036 2.00 5 3.79
hu 5,021 033 207 5 256
it 5,021 045 1.87 4 17.41(9.53)
v 5,021 041 194 4 529
It 5,021 041 194 4 5.08
pl 5,021 039 194 4 4.84(6.56)
pt 5,021 040 197 4 474
ro 5,021 039 200 5 422
sk 5,021 036 199 5 3.73(5.23)
sl 5,021 038 197 4 413
es 5,021 040 198 5 4.67(5.80)
sV 5,021 043 194 5 5.69

Table 1: Number of nodes, cluster value (CV), geodesic
distance (GD), diameter (D) and density of different net-
work versions of English. Links are binarized depending
on whether their weights are positive or not. In brackets:
values of lemmatized versions of Ly,.

Note that since the density of a network may have
substantial impact on random surfer processes as ap-
plied by us, and since analyticity is a morphologi-
cal rather than a semantic phenomenon, it may be
possible that the classification results reported below
are in fact due to syntagmatic relations — in contrast
to our hypothesis about their semantic, paradigmatic
nature. We address this issue below.

Semantic similarity Before proceeding to our
main task, the clustering of semantic spaces, we
measure how strongly our semantic association net-
works capture semantics. To this end, we com-
pute the correlation coefficient between the se-
mantic similarity scores of the word pairs in the
WordSimilarity-353 (Finkelstein et al., 2001) En-
glish word relatedness dataset and the similarity
scores, for the same word pairs, obtained by our
method. The WordSimilarity-353 dataset consists
of 353 word pairs annotated by the average of 13
human experts, each on a scale from 0 (unrelated) to
10 (very closely related or identical). We evaluated
only on those word pairs for which each word in the
pair is contained in our set of 5,021 English words,
which amounted to 172 word pairs. To be more



Figure 3: From left to right: Czech, Finnish, French, German, and Spanish networks. Thickness of edges indicates

weights of links. Links with weights below a fixed threshold are ignored for better graphical presentation.

precise on the computation of semantic relatedness,
for each word pair (u, v) in the WordSimilarity-353
dataset, we computed the semantic similarity of the
word pair in the language L version of English by
considering the cosine similarity of u* and v*, that
is, by means of the semantic meanings of uw and v
generated by the random surfer process on network
G. Doing so for each language Ly gives 20 dif-
ferent correlation coefficients, one for each network
version of English, shown in Table 2.

it 034678 | : :

pt 032249 | sl 0.25720
es 0.31990 | bg 0.25372
ro 0.31204 | hu 0.24910
nl 0.30885 | et 0.24212
da 030715 | 1t 0.24207

Table 2: Sample Pearson correlation coefficients be-
tween human gold standard and our approach for
different network versions of English.

We first note that the correlation coefficients dif-
fer between network versions of English, where the
Italian version exhibits the highest correlation with
the (English) human reference, and the Lithuanian
version the lowest. Note that Hassan and Mihal-
cea (2009) obtain a correlation coefficient of 0.55 on
the whole WordSimilarity-353 dataset, which is con-
siderably higher than our best score of 0.34. How-
ever, first note that our networks, which consist of
5,021 lexical units, are quite small compared to the
data sizes that other studies rely on, which makes
a comparison highly unfair. Secondly, one has to
see that we compute the semantic relatedness of En-
glish words from the semantic point of view of two
languages: the reference language and the respec-
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tive source language (e.g., the Italian version of En-
glish), which, by our very postulate, differs from the
semantics of the reference language. According to
Table 2, the semantics of English is apparently better
represented by the semantics of Italian, Portuguese,
Spanish, Romanian, and Dutch, than, e.g., by the
one of Bulgarian, Hungarian, Estonian, and Lithua-
nian — at least subject to the translations provided by
the Europarl corpus.'?

Clustering of semantic spaces Finally, we clus-
ter semantic spaces by comparing the network ver-
sions of the English reference language. To deter-
mine the semantic distance between two languages
Ly, and L;, we plug in each pair of languages in Eq.
(3) — with S(v¥,v7) as vector distance — thus ob-
taining a symmetric 20 x 20 distance matrix. Fig-
ures 4 and 5 show the results when feeding this
distance matrix as input to k-means clustering (a
centroid based clustering approach) and to hierar-
chical clustering using default parameters. As can
be seen, both clustering methods arrange the lan-
guages on the basis of their semantic spaces along
genealogical relationships. For instance, both clus-
tering algorithms group Danish, Swedish, Dutch and
German (Germanic), Portuguese, Spanish, French,
Italian, Romanian (Romance), Bulgarian, Czech,
Polish, Slovak, Slovene (Slavic), Finnish, Hungar-
ian, Estonian (Finno-Ugric), and Latvian, Lithua-
nian (Baltic). Greek, which is genealogically iso-
lated in our selection of languages, is in our classi-
fication associated with the Romance languages, but
constitutes an outlier in this group. All in all, the
clustering appears highly non-random and almost a

19Table 2 also suggests that the Romance languages are se-
mantically closer to English in our data than, e.g., the Germanic,
which may be considered a deviation from, e.g., genealogical
language similarity.
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Figure 4: k-means cluster analysis of the 20 Eu-
roparl languages. Optimal number of clusters k = 5
determined by sum of squared error analysis.
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Figure 5: Dendrogram of hierarchical clustering of
the 20 non-lemmatized Europarl languages.

perfect match of what is genealogically expected.

To address the question of whether morphological
principles are the driving force behind the clustering
of the semantic spaces generated here, we lemma-
tized the reference language English and all source
languages Lj for which lemmatizers were freely
available in order to conduct the same classification
procedure. This included 10 languages: Bulgarian,
Dutch, Estonian, Finnish, French, German, Italian,
Polish, Slovak, and Spanish. This procedure leads to
an assimilation of density values in the graphs G, as
shown in Table 1: for the 10 languages, the relative
standard deviation in network density decreases by
about 23%. However, the optimal groupings of the
languages do not change in that k-means clustering
determines the five groups Spanish, French, Italian;
Bulgarian, Slovak, Polish; German, Dutch; Finnish;
Estonian, irrespective of whether the named ten lan-
guages are lemmatized or not.!!

Integrated networks Lastly, we address the
derivative question raised in the introduction, viz.,

"'The clustering based on 10 languages slightly differs in that
Finnish and Estonian are assigned to distinct clusters.
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whether the integration of heterogeneous/dissimilar
multilingual resources may be harmful or beneficial.
To this end, we consider integrated networks G (%) in
which the weight of a link («, 3) € E() is given as
the average (arithmetic mean) link weight of all link
weights in the networks for a selection of languages
S. Using our optimal number of k = 5 clusters (and
the clusters themselves) derived above, we thus let S
range over the union of all the languages in the 2% —1
possible subsets of clusters.!” For each so resulting
network G(®), we determine semantic similarity be-
tween any pair of words exactly as above and then
compute correlation with the WordSimilarity-353
dataset. Results are given in Table 3. The numbers
appear to support the hypothesis that, in the given
monolingual semantic similarity task for English,
integrating semantically similar languages (and, pu-
tatively, languages whose semantic similarity to En-
glish itself is closer) leads to better results than in-
tegrating heterogeneous languages. For example,
the average network consisting of the Romance lan-
guages has a roughly 2% higher correlation than
the network consisting of all languages. Interest-
ingly, however, the very best combination result is
achieved when we integrate the Romance, Germanic
and the three non-Indoeuropean languages Finnish,
Hungarian and Estonian.

R+G+F 0.34402 : :
R+G 0.34376 | S+B  0.27496
R+F 033743 | S 0.27462

R 0.33719 | B+F 0.27424
: : F  0.26074
R+G+F+B+S 031670 | B 0.25904

Table 3: Sample Pearson correlation coefficients be-
tween human gold standard and our approach for
different integrated network versions. Language
cluster abbreviations: Romance (it, fr, pt, es, ro, el),
Germanic (sv, nl, de, da), Slavic (bg, cz, pl, sk, sl),
Baltic (lv, 1t), Finno-Ugric (fi, hu, et).

"’Ideally, we would have let S range over all possible 2™ — 1
nonempty subsets of n languages, but this would have required
220 _ 1 > 1 million comparisons.



5 Conclusion

We have encoded lexical semantic spaces of differ-
ent languages by means of the same pivot language
in order to make the languages comparable. To this
end, we introduced association networks in which
links between words in the reference language de-
pend on translations from the respective source lan-
guage, weighted by probability of translation. Our
methodology is closely related to analogous ap-
proaches in the paraphrasing community which in-
terlink paraphrases by means of their translations in
other languages (e.g., Bannard and Callison-Burch
(2005), Kok and Brockett (2010)), but our appli-
cation scenario is different and we also describe a
principled manner to generate weighted links be-
tween lexical units from multilingual data. Using
random walks to represent similarities among words
in the association networks, we finally derived sim-
ilarity values for pairs of languages. This allowed
us to perform several cluster analyses to group the
20 source languages. Interestingly, in our data sam-
ple, semantic language classification appears to be
almost perfectly correlated with genealogical rela-
tionships between languages. To the best of our
knowledge, our translation-based lexical semantic
classification is the first large-scale quantitative ap-
proach to establishing a lexical semantic typology
that is completely unsupervised, ‘bottom-up’, and
data-driven. !

In future work, we intend to delineate specific lex-
ical semantic fields in which particular languages
differ, which can easily be accomplished within our
approach. Also, it must be investigated whether our
association networks can capture semantic similar-
ity in a competitive manner once they are scaled up
appropriately. Finally, applying our methodology to
a much larger set of languages is highly desirable.
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