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Abstract 

Keyphrase extraction is a fundamental 
technique in natural language processing. It 
enables documents to be mapped to a concise 
set of phrases that can be used for indexing, 
clustering, ontology building, auto-tagging 
and other information organization schemes. 
Two major families of unsupervised 
keyphrase extraction algorithms may be 
characterized as statistical and graph-based. 
We present a hybrid statistical-graphical 
algorithm that capitalizes on the heuristics of 
both families of algorithms and is able to 
outperform the state of the art in 
unsupervised keyphrase extraction on several 
datasets. 

1 Introduction 

Keyphrase extraction algorithms aim to extract, 
from within the document phrases and words that 
best represent the document’s main topics. Being 
able to accurately determine what a document is 
about allows computers to cluster together 
documents that share topics (Hammouda et al., 
2005), better answer search queries (Qiu et al., 
2012), and generate short document summaries 
(D’Avanzo et al., 2004).  Furthermore, keyphrase 
extraction can be used to facilitate the automatic 
construction of concept maps (Leake et al., 2003) 
or ontologies (Fortuna et al., 2006) which enable 
better understanding of the interconnections and 
relations between different topics. Keyphrase 
extraction is also used in content-based 
recommender systems which help users in 
discovering information relevant to their 

previously expressed interests (Lops et al., 2011). 
The aforementioned techniques are all important 
tools in the organization and understanding of the 
ever expanding repositories of textual information 
available online in the form of research papers, 
news articles, blog posts, etc. and keyphrase 
extraction is central to all of them. Therefore it 
could be said that keyphrase extraction is a 
fundamental NLP task, improvements in which 
could cascade into improvements in higher-level 
applications that build upon it.  

In this work we have focused on unsupervised 
keyphrase extraction approaches as not only they 
are useful in domains where training data is hard to 
procure but even in the presence of ample training 
data word weights calculated using unsupervised 
methods can be used as one of several features in 
supervised keyphrase extraction algorithms. 
Therefore increases in the accuracy of 
unsupervised methods can propagate into the 
results of supervised algorithms as well. 

There are two prominent families of 
unsupervised keyphrase extraction algorithms. The 
older of these two is clustered around the tf-idf 
term weighting metric where word statistics such 
as frequency of occurrence in the document or 
rareness in the corpus are used to distinguish 
potential keyphrases. The more recently developed 
of the two families has been built on the 
foundation of the TextRank algorithm (Mihalcea & 
Tarau, 2004). In algorithms of this family a 
graphical representation of the text is constructed 
with words as nodes and edges reflecting co-
occurrence relations. This graph is then used to run 
node ranking algorithms such as PageRank (Page 
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et al., 1999) that assign weights to the node-words 
reflecting their semantic importance to the text.  

Although some overlap between these two 
families of algorithms has occurred in works that 
incorporate statistical heuristics into graph-based 
methods this overlap is small and most methods do 
not utilize the full set of statistical heuristics. Our 
aim has been to 1) Construct a keyphrase 
extraction algorithm based on optimal statistical 
features and 2) Combine it with a graph-based 
algorithm for further improvements. The advantage 
of graph-based methods is that they take into 
account term co-occurrence patterns that are not 
generally utilized by statistical methods which take 
a bag of n-grams approach to document 
representation.  

2 Related Works 

In this section we focus mainly on related 
unsupervised keyphrase extraction algorithms. One 
of the most prominent of these algorithms has been 
the term frequency-inverse document frequency 
(tf-idf) term weighting function (Salton et al, 
1975). Given a corpus of documents the tf-idf 
weight of term t in document d is mathematically 
expressed as tf-idf(t,d)=tf(t,d)*idf(t) where tf(t,d) is 
the frequency of term t in document d and 
idf(t)=log(N/df(t)) where N is the total number of 
documents in the corpus and df(t) is the number of 
documents in the corpus that contain term t (Jones, 
1972). The term frequency heuristic is based on the 
intuition that terms which occur more often in a 
document are more likely to be important to its 
meaning. The idf function captures the rareness 
heuristic, that is, words which occur in many 
documents in the corpus are unlikely to be 
important to the meaning of any specific one.  

Tf-idf is simple yet relatively accurate therefore 
many variations of it have been used by other 
algorithms. One of the most successful of these is 
KP-Miner (El-Beltagy  & Rafea , 2010) which to 
the best of our knowledge represents the state of 
the art in unsupervised keyphrase extraction. KP-
Miner operates on n-grams and uses a modified 
version of tf-idf where the document frequency for 
n-grams with n greater than one is assumed to be 
one. We will explain the intuition behind this 
modification later as we have adopted it in our 
algorithm as well. KP-Miner’s initial candidates 
are comprised of the longest n-grams that do not 

contain a stop word or punctuation mark, occur for 
the first time within the first 400 words of the 
document and have a term frequency above a 
minimum threshold determined by document 
length. KP-Miner also boosts the weights of multi-
word candidates in proportion to the ratio of the 
frequencies of single word candidates to all 
candidates. In a reranking step, the tf-idf of each 
term is recalculated based on the number of times 
it is subsumed by other candidates in the top 15 
candidates list. Another tf-idf based unsupervised 
system is KX-FBK (Pianta & Tonelli, 2010) which 
uses some of the same heuristics as KP-Miner but 
with different formulations and was shown to 
underperform in comparison in the Semeval 2010 
keyphrase extraction task. 

An approach fundamentally different from tf-idf 
and its family of algorithms is TextRank. It is 
based on the intuition that 1) keywords in a 
document are more semantically interrelated as 
they are generally about related topics and 2) that 
semantic relatedness can be estimated using co-
occurrence relations. Therefore in TextRank a 
graphical representation of the text is constructed 
in which edges connect words co-occurring in a 
window of a certain length. The PageRank 
algorithm is then applied to this network of words 
to distinguish the important ones which are then 
reassembled into phrases wherever they occur next 
to each other in the text.  

TopicRank (Bougouin et al., 2013) which to the 
best of our knowledge is the state of the art in 
graph-based keyphrase extraction, is an 
enhancement of TextRank. Here, nodes represent 
topics which consist of sets of candidate terms 
clustered around shared sub-terms. In (Liang et al., 
2009) Chinese search engine query logs are used to 
extract candidate terms which are used as nodes in 
the graph. Edges are weighted based on co-
occurrence count. Also candidate terms which are 
longer or whose first occurrence is in the title or 
first paragraph have boosted edge weights. 
SingleRank (Wan & Xiao, 2008) also uses co-
occurrence counts as edge weights. It ranks noun 
phrases in the text based on the sum of their word 
weights. ExpandRank (Wan & Xiao, 2008) builds 
upon SingleRank by incorporating neighboring 
documents but without significant performance 
improvements (Hasan & NG, 2010). 
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3 Method  

Our algorithm processes an input document in four 
stages. In the first stage we extract all possible n-
grams from the input text and eliminate those that 
are highly unlikely to be keyphrases, for instance 
n-grams containing punctuation marks. In the 
second stage the remaining n-grams are ranked 
based on a modified version of tf-idf. In the third 
stage the top ranking candidates from stage two are 
reranked based on additional statistical heuristics 
such as position of first occurrence and term 
length. In the fourth and final stage the ranking 
produced in stage three is incorporated into a 
graph-based algorithm which produces the final 
ranking of keyphrase candidates.  

3.1  Eliminating Unlikely Candidates 

In the first stage all possible n-grams in the text for 
n from 1 to 6 are produced. Those n-grams 
considered highly unlikely to be keyphrases are 
eliminated from the candidates list. These include 
n-grams containing stop words, punctuation marks 
or words whose part of speech tag is anything 
different than noun, adjective or verb. Furthermore 
n-grams whose frequency of occurrence in the text 
falls below a minimum threshold are also 
eliminated. In the current work this threshold is 
determined based on document length and is 0 for 
short documents, 2 for medium-length documents 
and 3 for long documents where short is defined as 
containing less than 1500 words, medium as 
between 1500 to 4000 and long as any document 
with more than 4000 words. 

3.2 Initial Ranking of All Candidates 

In the second stage n-grams not eliminated in the 
first stage are ranked based on a modified version 
of tf-idf as used in KP-Miner. The modification 
involves changing the document frequency count 
in idf calculation such that for n-grams with n > 1 
document frequency is always considered to be 
one. In other words we assume that all multi-word 
candidates occur in one document only. This is 
because while rareness is a reliable indication of 
semantic importance in the case of single words, it 
does not offer the same accuracy when it comes to 
multi-words. In many cases relatively common 
single words can combine into rare multi-words 
without much semantic importance. For example, 

in the Semeval test dataset of 100 full-length 
academic papers, to be described later in the 
evaluation section, the n-grams control has, rule 
satisfies and become known all have a document 
frequency of 1. On the other hand phrases chosen 
by humans as keyphrases such as Query expansion 
which occurs in 9 documents and as a keyphrase in 
4 or language models which occurs in 12 
document and again in 4 of them as key, have 
relatively high document frequency counts. These 
examples demonstrate how including the actual 
document frequency counts in idf calculation could 
be disadvantageous for distinguishing multi-word 
keyphrases. 

3.3 Reranking Top Candidates 

At the end of stage two we have an initial 
ranking of our candidates based on their tf-idf 
scores. In the third stage we rerank the top T 
candidates from stage two based on additional 
heuristics. These heuristics are position of first 
occurrence, term length and subsumption count. In 
the current work T is set to 100 based on 
experiments on a small development set of 40 
documents from the Semeval trial set. 

The position of first occurrence heuristic has 
performed consistently well in previous keyphrase 
extraction experiments. Medelyan and Witten 
(2008) use a linear decay function of the position 
of first occurrence as a feature in their supervised 
algorithm. It has also been utilized in unsupervised 
methods. In KP-Miner a constant position 
threshold is used where n-grams whose first 
occurrence is beyond it are eliminated from the 
candidate list. KX-FBK uses the linear decay 
function raised to the power of two. We introduce 
a novel encoding of this heuristic in the form of a 
logarithmic decay function, which as we will show 
in the discussion section outperforms all 
aforementioned variations.  We define the Position 
of First Occurrence factor (PFO) according to the 
following formula: 

𝑃𝐹𝑂 𝑡,𝑑 = log
𝑐𝑢𝑡𝑜𝑓𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑝 𝑡,𝑑
  (1)       

where p(t,d) is the position of term t’s first 
occurrence in document d. In the current work 
cutoffPosition is set to 3000 as it performed best in 
experiments on the development set. 

Regarding term length, we hypothesize that 
among words with a high likelihood of being a 
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keyphrase, in this case the top 100 candidates from 
stage two, the addition of a word to an n-gram is 
likely to construct a more semantically specific 
phrase geared towards signifying a specific topic 
or subject e.g. web versus semantic web. Therefore 
longer n-grams are generally more likely to be 
keyphrases. Accordingly, we boost term t’s weight 
by its term length, TL(t) where length is the 
number of space separated words in t.  

Finally, we recalculate a term’s tf-idf weight by 
reducing its term frequency by its subsumption 
count among the top 100 candidates. Term t is said 
to be subsumed by term ts when ts contains t.  

The following formula shows how the statistical 
weight for term t in document d is calculated: 

𝑤! 𝑡,𝑑 = 
𝑡𝑓 𝑡,𝑑 − 𝑠𝑢𝑏𝑆𝑢𝑚𝐶𝑜𝑢𝑛𝑡 𝑡,𝑑 ∗ 𝑖𝑑𝑓 𝑡 ∗

𝑃𝐹𝑂 𝑡,𝑑 ∗ 𝑇𝐿 𝑡    (2) 
Where subSumCount(t,d) is the sum of term 
frequencies of all terms included in the top T list 
that subsume t. 

3.4 Graph-based Ranking 

In the fourth and final stage of our algorithm we 
use terms with positive weights after stage three as 
nodes in a graphical representation of the text. An 
edge is placed between two nodes if they co-occur 
within a window of width d. Whereas d is usually 
small, generally less than 20 words in most graph-
based algorithms, we have chosen a large window 
of 1500 and instead attenuate the edge weight 
based on the average log decayed distance between 
all co-occurrences of the term pair as show in 
equation 3 below 

𝑤! 𝑡! , 𝑡! =
  

!" !!
!!!   !" !!

!!! !"# !"#$"%&
!"#!!!"#!

!"#$%!!""#$$%&"%'(!!,!!)
       (3) 

where winSize is the co-occurrence window size 
set to 1500 in the current work based on F-measure 
performance on the development set, posi and posj 
are the respective positions of occurrences of terms 
ti and tj and numCo-occurrences(ti,tj) is the number 
of co-occurrences of the terms within the window 
of 1500.  

Furthermore, we incorporate term weights 
calculated using statistical features in the previous 
stages into the graphical representation of the text. 
We hypothesize that term weights calculated using 
statistical features may serve as a first estimate of a 
term’s keyphraseness, i.e. likelihood of being a 

keyphrase. The PageRank algorithm simulates a 
random walker on the graph. Each node’s eventual 
PageRank score reflects the portion of time the 
walker spends on that node (Langville & Meyer, 
2011). To make sure terms with higher statistical 
weights are visited more often we would want 
higher transition probabilities between them but 
lower transition probabilities between terms with 
lower weights. Therefore we use the product of the 
term pair’s weights as a factor into the weight of 
the edge between them in the graph. The weight of 
the edge between terms ti and tj is calculated using 
the following equation: 
𝑤! 𝑡! , 𝑡! = 𝑤! 𝑡! , 𝑡! ∗ 𝑤! 𝑡! ∗ 𝑤!(𝑡!)   (4) 

where, as previously defined in equation 3, wd is 
the distance based portion of the edge weight while 
ws(ti)*ws(tj) takes the terms’ statistical properties 
into account. 

For each node we normalize edge weights by 
dividing each outgoing edge weight by sum of 
outgoing edge weights for that node. This results in 
a slightly modified formula for PageRank 
compared to the one used in TextRank, where 
edges are uniform weight, as shown below. 
𝑆 𝑉! = 1 − 𝑑 + 𝑑 ∗ !! !,! ∗!(!!)

!! !,!!"#$%(!!)
!"#$(!!)  (5) 

where S(Vi) is the PageRank score of node Vi, d is 
the damping factor usually set to 0.15 and In(Vi) 
and Out(Vi) are the sets of edges where node Vi is 
the destination or the source respectively. 
PageRank consists of iteratively calculating the 
scores for each node until convergence where 
scores do not change significantly between 
iterations. The converged-on PageRank score for 
each node is our algorithm’s final output and 
determines the rankings of the candidate terms. 

4 Evaluation 

We evaluate our keyphrase extraction algorithm by 
comparing it to two state-of-the-art algorithms, 
KP-Miner and TextRank, on three datasets: The 
Semeval 2010 keyphrase extraction shared task 
dataset, the Inspec dataset of ACM abstracts and 
the Krapivin dataset of full length papers. To 
obtain results for KP-Miner we have used an 
executable kindly shared with us by the system’s 
author. For TextRank we have built on an existing 
open source implementation. The comparisons 
between the algorithms are done using the 
precision and recall at k metric where the top k 
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terms returned by each algorithm are used to 
measure precision and recall. Here k ranges from 1 
to 15. We also calculate the F-measure for k = 5, 
10 and 15. In the following section we describe 
each dataset in detail and report the results 
achieved by each algorithm on each dataset. 

The Semeval and Inspec datasets have also been 
used by Bougouin et al. (2013) for evaluating their 
implementation of TextRank along with more 
advanced graph-based algorithms SingleRank and 
TopicRank. We have used these results for further 
comparisons between our method and advanced 
graph-based algorithms as reported in section 4.4. 

4.1 Semeval Dataset 

The Semeval dataset was used in the Semeval 2010 
keyphrase extraction shared task (Kim et al., 
2010). To the best of our knowledge this shared 
task is the largest recent comparison of keyphrase 
extraction algorithms and an algorithm’s 
performance on this dataset is a relatively good 
indication of where it stands compared to others in 
the field. The Semeval dataset consists of 284 full 
length ACM articles divided into a test set of size 
100, training set of size 144 and trial set of size 40 
which we used as the development set for 
parameter tuning. Each article has two sets of 
human assigned keyphrases: the author-assigned 
and reader-assigned ones. The gold standard used 
in our experiments is the combined set of author 
and reader assigned keyphrases which is the same 
as was done in the Semeval shared task. The table 
below provides a statistical overview of this 
dataset’s documents. 
 

100 
docs 

Document 
Length 

Number of 
Keyphrases 

Keyphrase 
Length 

Max. 14171 29 8 
Avg. 7979 15.13 2.14 
Min. 4060 9 1 

Table 1.  Semeval test set statistics. 

We have compared our algorithm with KP-
Miner and TextRank using only the 100 documents 
in the test set. The following diagram shows the 
average precision and recall achieved by each 
algorithm. As was done in the Semeval task, 
comparisons are done between once stemmed 
human assigned keyphrases and ranked candidates 
returned by each algorithm. 

 
Figure 1. Semeval precision(y), recall(x) k < 16 

 
The following table shows the achieved F-

measure for each algorithm at k=5, 10 and 15. It 
also contains the corresponding percentage 
improvement at each k. The statistical significance 
of each improvement is measured using a 2-sided 
paired t-test. Improvements are in bold font where 
they are statistically significant at p < 0.05. 

 
K = 5 10 15 

SGRank 20.25 26.07 27.20 

KPMiner 
Improvement 

19.01 
6.5% 

24.06 
8.3% 

25.54 
6.4% 

Textrank 
Improvement 

1.25 
1509% 

2.46 
960% 

3.47 
683% 

Table 2. Semeval F-measures and improvements. 

As can be seen from the above results our 
method outperforms KP-Miner in both precision 
and recall for all k and achieves statistically 
significant improvements in the F-measure over 
KP-Miner for k=10 and 15. These results are 
noteworthy considering that in the Semeval 
keyphrase extraction shared task KP-Miner was the 
best performing unsupervised algorithm, and the 
second best overall out of 19 systems, 
outperforming prominent supervised algorithms 
such as Maui (Medelyan et al., 2009). TextRank 
seems to generally underperform on longer 
documents and has performed poorly on the 
Semeval dataset. 

4.2 Inspec Dataset 

The Inspec dataset is comprised of 2000 ACM 
abstracts divided into test, training and validation 
sets containing 500, 1000 and 500 abstracts 
respectively. We follow the same approach as 
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taken by Mihalcea and Tarau (2004). We use only 
the 500 documents in the test set. The following 
table provides a statistical overview of this 
document set. 
 

500 
docs 

Document 
Length 

Number of  
Keyphrases 

Keyphrase 
Length 

Max. 338 31 9 
Avg. 121.8 9.8 2.3 
Min. 23 2 1 

Table 3.  Inspec dataset statistics. 

Figure 2 shows the average precision and recall 
for all three algorithms for k from 1 to 15. Table 4 
shows the F-measure improvements made by our 
method over the two other algorithms for k=5, 10 
and 15. As these results show, on this dataset of 
relatively short documents, TextRank outperforms 
KP-Miner for k>2. Our algorithm achieves higher 
precision and recall than both KP-Miner and 
TextRank for all k with statistically significant 
gains in the F-measure for k=5, 10 and 15. 

 

 
Figure 2. Inspec precision(y), recall(x) k < 16 

 
K = 5 10 15 

SGRank 29.16 33.95 33.66 
KPMiner 

Improvement 
18.45 

59.7% 
15.89 
118% 

12.73 
175% 

TextRank 
Improvement 

25.53 
15.4% 

30.6 
13.3% 

29.7 
17.7% 

Table 4. Inspec F-measures and improvements. 

4.3 Krapivin Dataset 

The Krapivin dataset consists of 2000 full length 
ACM papers. This dataset has been prepared by 
Krapivin et al. (2009). Each article has author-

assigned and editor-corrected keyphrases that we 
use as the gold standard in our evaluation. Our 
experiments are done on a 400-document subset of 
this dataset. The table below provides a statistical 
characterization of these 400 documents. 
 

400 
docs 

Document 
Length 

Number of 
Keyphrases 

Keyphrase 
Length 

Max. 16721 24 6 
Avg. 7934 6.38 2.1 
Min. 3892 1 1 

Table 5.  Krapivin dataset statistics. 

On this dataset keyphrases and candidate terms 
have been stemmed once before comparison. 
Similar to the previously mentioned experiments 
we have measured the precision and recall of all 
three algorithms for k from 1 to 15 as shown in 
figure 3. Table 6 contains the F-measures for all 
three algorithms at k=5, 10 and 15 along with the 
improvements made by our algorithm. Similar to 
the Semeval dataset TextRank performs very 
poorly on this dataset of longer documents. KP-
Miner performs much better but both methods are 
outperformed by our method on all k with 
statistical significance as shown in Table 6. 

 

 
Figure 3. Krapivin precision(y), recall(x) k < 16 

 
K = 5 10 15 

SGRank 21.2 21.6 19.4 

KPMiner 
Improvement 

18.43 
15.% 

18.65  
16.1% 

17.4 
11.7% 

Textrank 
Improvement 

1.02 
1974% 

1.61 
1240% 

2.1 
823% 

Table 6. Krapivin F-measures and improvements. 
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4.4 Advanced Graph-based Methods 

As mentioned previously Bougouin et al. (2013) 
introduce TopicRank and use F-measure at k=10 to 
compare against TextRank and another advanced 
graph-ranking method SingleRank. They use the 
Semeval and Inspec datasets for comparison 
providing us with an opportunity to compare our 
performance with those of TextRank and the two 
more advanced graph-based algorithms. Table 7 
contains the F-measures at k=10 for our algorithm, 
SGRank, and all aforementioned algorithms. Note 
that the particular implementation of TextRank 
used in this paper performs worse than ours on the 
Inspec dataset but better for the Semeval dataset. 

Table 7. Comparison with Advanced Graph-based 
methods F-measures at K=10. 

 
As seen in Table 7 our algorithm’s average 
performance is considerably better than all of the 
advanced graph-based algorithms.  

5 Discussion 

 As shown in the preceding results our algorithm 
outperforms all other methods in all the used 
datasets. The only exception is SingleRank which 
marginally outperforms our method on the Inspec 
dataset but performs very poorly on the Semeval 
dataset, as seen in Table 7. Also worth noting is 
KP-Miner’s relatively poor performance on the 
shorter documents of the Inspec dataset. This could 
potentially be due to the fact that KP-Miner only 
considers terms as candidates which occur on their 
own in the text i.e. surrounded by punctuation 
marks or stop words. In shorter documents it is 
more likely that fewer keyphrases would occur in 
such conditions in the text, causing them to be 
eliminated early on by KP-Miner. Our algorithm 
however considers all n-grams without requiring 
that they occur on their own. This allows us to 
consider more candidates and avoid a performance 
reduction in shorter documents.  However, there is 
an advantage to eliminating terms that never occur 
on their own. Many keyphrases are multi-words. In 
some cases smaller parts of keyphrases tend to 

occur in high frequencies, as they are related to the 
topic of the document and are sometimes used in 
place of the keyphrase, and therefore achieve high 
rankings. We call such frequent sub-phrases 
keyphrase fragments. For example document C-1 
in the Semeval test set includes two keyphrases 
grid service discovery and web service leading to a 
highly ranked keyphrase fragment service. High 
ranking keyphrase fragments are detrimental to the 
algorithm’s performance. One way to counteract 
them is based on the observation that they rarely 
occur on their own as they usually appear as part of 
larger phrases. This is the motivation behind KP-
Miner’s elimination of candidates that do not occur 
on their own. Therefore, to consider all candidates, 
while countering the keyphrase fragments problem, 
we calculate the subsumption count over a much 
larger portion of the ranked terms compared to KP-
Miner. This larger list will include more terms 
which keyphrase fragments are a part of, causing 
greater reductions in the fragments’ rankings. The 
number of top candidates used in KP-Miner to 
calculated subsumption is set equal to an input 
parameter that determines the number of 
keyphrases to be returned to the user. In the current 
work and the Semeval shared task this parameter is 
15. In other words KP-Miner calculates the 
subsumption count over the top 15 terms whereas 
we calculate it over the top 100 terms. To test the 
effectiveness of this strategy we reduced our 
subsumption threshold to 15. This change led to a 
9% decrease in the F-Measure at k=15 on the 
Semeval dataset, 4.7% decrease on the Inspec and 
1.5% decrease in the Krapivin dataset. Note that 
for the rest of the Discussion section percentage 
changes are those of the F-measure at k=15. Our 
algorithm’s high performance on both short and 
long documents indicates the viability of 
considering all n-grams as candidates and 
mitigating the effect of keyphrase fragments by 
counting subsumption over more top ranking 
terms. 

Another novel aspect of our algorithm is its 
formulation of the position of first occurrence 
heuristic as described by the PFO function in 
equation 1. We compare our approach with two 
other unsupervised algorithms that utilize this 
heuristic: KP-Miner and KX-FBK. The method 
used in KP-Miner is a hard cutoff threshold where 
candidates whose first occurrence is beyond 400 

F at k=10 Inspec Semeval Average 
SGRank 33.95 26.4 30.1 

TextRank 12.7 5.6 9.1 
SingleRank 35.2 3.7 19.4 
TopicRank 27.9 12.1 20 
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words into the document are eliminated. KX-FBK 
uses the following decay function: 

𝑃𝐹𝑂!" 𝑡,𝑑 =
𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑙𝑒𝑛𝑔𝑡ℎ − 𝑝 𝑡,𝑑

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑙𝑒𝑛𝑔𝑡ℎ

!

6  

We tested our system with our PFO function 
replaced by those of KP-Miner and KX-FBK on 
the Semeval, Inspec and Krapivin datasets. 
Replacement with KX-FBK’s PFO led to 
respective reductions in the F-Measure at k=15 of 
6.5%, 9.5% and 15.1%. Replacement with KP-
Miner’s PFO led to a 10.9% reduction in Semeval 
but no reduction in Inspeq and a 2.9% 
improvement in Krapivin. We also replaced our 
PFO function with the linear decay function used 
by Medelyan and Witten (2008). This function is 
the same as equation 9 but without the exponent. 
This led to a 1.4% reduction in Semeval, 0.7% 
reduction in Inspec and a 2.9% reduction in 
Krapivin. These results show that our encoding of 
the PFO heuristic as a logarithmic decay function 
leads to overall gains in accuracy although it 
underperforms slightly compared to KP-Miner’s 
PFO on the Krapivin dataset which points to 
further room for improvement. One possible future 
direction would be to design functions that adjust 
the cutoffPosition in equation 1 based on document 
length as some sensitivity to this was observed in 
our experimentations. We also replaced our term 
length factor, TL in equation 2, with KP-miner’s 
boosting function for multi-words. This caused a 
3.2% reduction in Semeval, 5.1% reduction in 
Inspec and 2.3% reduction in Krapivin. 

Our algorithm uses graph-based methods on top 
of statistical features to capture keyphrases not 
distinguishable using statistical heuristics. To test 
the effectiveness of this addition we eliminated the 
graph-based reranking stage. This caused a 1.1% 
reduction in Semeval, 4% reduction in Inspec and 
a 4.3% reduction in Krapivin which demonstrates 
that our approach of combining statistical and 
graph-based features leads to overall 
improvements in performance. Our method also 
introduces a novel distance-based edge weighting 
formula to the graph-based family of algorithms. 
Most graph-based algorithms place edges where 
terms co-occur within a window of a few words. 
This is equivalent to a sudden drop in the 
estimation of semantic relatedness at the edge of 
the window. We however choose a much larger 
window of 1500 and gradually reduce the edge 

weight with increasing distance between the terms 
according to equation 3. To measure the 
effectiveness of this approach we compared it with 
a window of 100 words with no positional decay, 
i.e. wd in equation 4 is set to one for terms 
occurring within the window of 100 and zero 
otherwise. This caused a 2.2% drop in the Semeval 
dataset i.e. it performed lower than with no 
graphical reranking at all. In Krapivin it caused a 
2.4% drop in performance and a 0.4% drop in the 
Inspec dataset. For further comparison we replaced 
wd with the dist function used in TopicRank which 
is the sum of inverse distances between all 
occurrences of a term pair. This caused a 1.4% 
reduction in Semeval, no difference in Krapivin 
and a 0.3% reduction in Inspec. These results 
demonstrate the effectiveness of our novel distance 
based edge weighting function.  

An interesting point is that both our positional 
functions, PFO and wd are logarithmic decays. This 
hints at a logarithmic decrease in semantic 
importance or relatedness with increased distance 
which is the same as how the idf function relates a 
word’s semantic importance to its document 
frequency. Our initial hypothesis for the success of 
logarithmic decay functions is that both positional 
and document frequency heuristics are governed 
by the law of diminishing returns. That is, the 
distinguishing power of each heuristic decreases as 
the inputs increase. Taking the document 
frequency heuristic (df) as an example, we know 
that rareness, i.e. small dfs, indicate higher 
semantic importance. Therefore, in a corpus of 
1000 documents, a word with a df of 1 is much 
more likely to be a keyphrase than a word with a df 
of 20, as reflected in their idf scores. However as 
the df increases the same difference in df’s does 
not imply the same difference in probability of 
being a keyphrase e.g. we intuitively know that 
based on rareness alone, our estimate of the 
difference in the probability of being a keyphrase 
for a pair of terms with df’s 980 and 1000 would 
be much less reliable compared to a pair with df’s 
1 and 20, even though the difference in the df pairs 
are the same. The same logic applies to the 
position of first occurrence and distance based 
semantic relatedness heuristics. Incorporating this 
diminishing returns property into the mathematical 
formulation of the heuristic calls for a function 
with a decreasing absolute value slope i.e. with a 
second derivative with the opposite sign of the 
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first, to reflect our decreasing confidence in the 
heuristic as values increase. This rules out linear 
functions. Although other functions such as 
reciprocals fulfill this property, judging based on 
the success of idf and our positional decay 
functions it seems that logarithmic decay does 
better at modeling the intrinsic rate of this 
diminishing distinguishing power of the heuristic, 
perhaps due to its slower decline. Why this is and 
whether better decay functions can be designed or 
tuned to specific domains is a future direction we 
plan to explore. It is also worth noting that unlike 
most graph-based algorithms whose performances  
are completely dependent on a POS tag filter, 
SGRank suffers relatively slight reductions in F-
measure at 15 without the POS tag filter: 3.6% on 
Semeval, and 2.6% in Krapivin and 24.5% on 
Inspec. 

 

Table 8. Effects of individual features on performance. 
Columns S., I. and K. contain F-measures (k=15) for the 

Semeval, Inspec and Krapivin datasets respectively. 
 

Table 8 contains a summary of how the 
elimination or replacement of different features 

affects the performance of our algorithm, as 
discussed previously. It contains the F-measure at 
k = 15, averaged across all datasets, for the full 
algorithm along with variations of it produced by 
changing different features. 

6 Conclusion and Future Directions 

 We introduce an unsupervised keyphrase 
extraction algorithm that combines statistical and 
graph-based heuristics and is able to improve upon 
the state of the art, with statistical significance, on 
several datasets. Among other features, our 
algorithm uses a novel variation of the 
subsumption heuristic. We also demonstrate the 
suitability of log decay functions for 
mathematically expressing heuristics that are based 
on phrase distance such as the position of first 
occurrence and the weighting of graph edges based 
on the average distance of phrase occurrences. 
Another way of looking at the presented algorithm 
is as a term weighting scheme. Therefore an 
interesting future direction would be to investigate 
whether replacing traditional term weighting 
schemes, e.g. tf-idf, in areas such as information 
retrieval, document clustering and supervised 
algorithms where tf-idf is used as a feature would 
cause any improvements in performance. 
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