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Abstract

This paper addresses the question of how doc-
ument classifiers can exploit implicit infor-
mation about document similarity to improve
document classifier accuracy. We infer doc-
ument similarity using simple n-gram over-
lap, and demonstrate that this improves over-
all document classification performance over
two datasets. As part of this, we find that
collective classification based on simple itera-
tive classifiers outperforms the more complex
and computationally-intensive dual classifier
approach.

1 Introduction

In machine learning, there is a rich tradition of re-
search into the two tasks of: (1) “point-wise” clas-
sification, where each instance is represented as an
independent instance, and the predictive model at-
tempts to learn a decision boundary to capture in-
stances of a given class; and (2) graphical learn-
ing and inference, where instances are connected in
a graph, and learning/inference take place relative
to the graph structure connecting those instances,
based primarily on either conditional dependence
(i.e. one event is dependent on the outcome of an-
other) or “homophily” (i.e. the tendency for con-
nected instances to share various properties).1 Var-
ious joint models that combine the two have also
been proposed, although in natural language pro-
cessing at least, these have focused largely on con-
ditional dependence, in the form of models such as

1In some tasks, it can also indicate heterophily, i.e. the ten-
dency for connected instances to have contrasting properties, as
we shall see for one of our two dataset.

hidden Markov models (Rabiner and Juang, 1986)
and conditional random fields (Lafferty et al., 2001),
where independent properties of words, e.g., are
combined with conditional dependencies based on
their context of use to jointly predict the senses of
all words in a given sentence (Ciaramita and John-
son, 2003; Johannsen et al., 2014).

This paper explores the utility of homophily
within joint models for document-level semantic
classification, focusing specifically on tasks which
are not associated with any explicit graph structure.
That is, we examine whether implicit semantic doc-
ument links can improve the results of a point-wise
(content-based) classification approach.

Explicit inter-document links have been variously
shown to improve document classifier performance,
based on information sources including hyperlinks
in web documents (Slattery and Craven, 1998; Oh et
al., 2000; Yang et al., 2002), direct name-references
in congressional debates (Thomas et al., 2006; Bur-
foot et al., 2011; Stoyanov and Eisner, 2012), ci-
tations in scientific papers (Giles et al., 1998; Lu
and Getoor, 2003; McDowell et al., 2007), and user
mentions or retweets in social media (Jiang et al.,
2011; Tan et al., 2011). However, document col-
lections often don’t contain explicit inter-document
links, limiting the practical usefulness of such meth-
ods. In this paper, we seek to expand the reach of
research which incorporates linking information, in
inducing implicit linking information between doc-
uments, and demonstrating that the resultant (noisy)
network structure improves document classification
accuracy.

The intuition underlying this work is that some
types of documents have features which are either
absent or ambiguous in training data, but which have
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the special characteristic of indicating relationships
between the labels of documents. Most often, an
inter-document relationship indicates that two doc-
uments have the same label, but depending of the
task, it may also indicate that they have different la-
bels. In either case, classifiers gain an advantage if
they can consider these features as well as conven-
tional content-based features.

The major contribution of this paper is in show-
ing that document classification accuracy can be im-
proved over a range of datasets using automatically-
induced implicit semantic inter-document links, us-
ing collective classification. We are the first to
achieve this using a general-purpose setup, as ap-
plied to a range of datasets. Our results are achieved
using n-gram overlap features for both the CON-
VOTE and BITTERLEMONS corpora, without the use
of annotations for explicit semantic inter-document
relationships. A second contribution of this work
is the finding that simple iterative classifiers outper-
form more complex dual classifiers when using im-
plicit inter-document links. This finding contradicts
earlier work using explicit document links, where
the dual classifier approach has generally been found
to perform best (Thomas et al., 2006; Burfoot et al.,
2011). While the work presented here is concep-
tually quite simple, the findings are significant and
potentially open the door to accuracy improvements
on a range of document-level semantic tasks.

2 Related Work

Previous work has dealt with the question of col-
lective document classification using implicit inter-
document relationships in two basic ways:

1. proximity: use a spatial or temporal dimension
of the domain to relate documents (Agrawal et
al., 2003; Goldberg et al., 2007; McDowell et
al., 2009; Somasundaran et al., 2009).

2. similarity: relate documents via some notion
of their content-based similarity (Blum and
Chawla, 2001; Joachims, 2003; Takamura et
al., 2007; Sindhwani and Melville, 2008; Jur-
gens, 2013)

The work using similarity-based links is the clos-
est to ours but is also strongly differentiated because

it focuses on transductive semi-supervised classifi-
cation. That task begins with the premise that only
a small amount of labelled training data is avail-
able, so content-only classification is likely to be
inaccurate. By contrast, the supervised techniques
in this paper deal with large amounts of labelled
training data and relatively high content-only perfor-
mance – 76% for CONVOTE and 87% for BITTER-
LEMONS. It is reasonable to assume that the types of
similarity-based relationships derived for transduc-
tive semi-supervised classification would be ineffec-
tive in a supervised context.

This conclusion is supported by an experiment
that shows that the vocabularies of document pairs
tend to overlap to similar degrees regardless of doc-
ument class (Pang and Lee, 2005).

3 Corpora

We experiment with two corpora in this research:
CONVOTE and BITTERLEMONS. These two are se-
lected on the grounds that they satisfy two intuitive
criteria about types of text collections that may con-
tain features that are not useful for content-only clas-
sification, but which may indicate relationships be-
tween pairs of documents: (1) the corpora both use
an unconstrained prose vocabulary, which increases
the likelihood that authors will use distinctive words
or sequences of words that are not frequent enough
to be useful in training, but which can be used to se-
mantically relate pairs of documents (c.f. newswire
articles); and (2) the majority of the text content in
both corpora is clearly relevant to the dimension of
classification, i.e. there is minimal use of “boiler-
plate” or “background” material, so the pool from
which to select task-relevant content to form inter-
document semantic relationships is larger.

3.1 CONVOTE

CONVOTE (Thomas et al., 2006) consists of US
congressional speeches relating to a specific bill or
resolution, and the ultimate vote of each speaker
(“for” or “against”). The document classifier uses
the text of each speech to predict the vote of the
speaker. Three modifications are made to the cor-
pus: (1) speeches by the same speaker are concate-
nated, to more naturally represent the requirement
that each speaker only has one vote; (2) we drop
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Total
Tokens 1.2M
Speeches 1699
Debates 53
Average speakers/speeches per debate 32
Average tokens per speech 735
Proportion of FOR speeches 49%

Table 1: Corpus statistics for CONVOTE.

the fixed train, test, development set assignments
from the original dataset, and instead evaluate using
leave-one-out cross-validation over the 53 debates
contained in the dataset, to allow for a more statisti-
cally robust evaluation; and (3) we discard the man-
ually annotated inter-document relationships based
on references to speaker names, because implicit re-
lationships are the focus of this work.

Table 1 gives statistics for our rendering of CON-
VOTE. The identical figures for the average number
of speeches and speakers per debate reflect the fact
that each speaker now contributes only one unified
speech.

3.2 BITTERLEMONS

BITTERLEMONS (Lin et al., 2006) is a collection of
articles on the Israeli–Arab conflict harvested from
the Bitterlemons website.2 In each weekly issue, the
editors contribute an article giving their perspectives
on some aspect of the conflict, and two guest authors
contribute articles, one from an Israeli perspective
and the other from a Palestinian perspective. Some-
times these guest contributions take the form of an
interview, in which case we remove the questions
(from the editors) and retain only the answers.

The statistics in Table 2 give a picture of the size
and structure of BITTERLEMONS.

In accordance with Lin et al. (2006), we experi-
ment with heldout evaluation, with all articles con-
tributed by the editors placed in the training set and
those contributed by the guests in the test set. This
allows the task to be framed as “perspective” classi-
fication, rather than author attribution, i.e. we are fo-

2http:/www.bitterlemons.org/

Total
Tokens 0.5M
Articles 594
Topics 149
Average articles per topic 4
Average tokens per article 843
Percentage of ISRAELI speeches 50%

Table 2: Corpus statistics for BITTERLEMONS.

cused on the content of the contributions rather than
stylistic or biographical features that may identify
one editor or the other.

4 Implicit Inter-document Similarity

To implement the hypothesis that documents that
use the same rare word or sequence of words are
more likely to carry the same label, we calculate
a cosine similarity metric between every pairing of
documents in a given corpus, using an idf-weighted
term vector used to represent document di. The idf
weighting serves to emphasise terms that are rare
within the corpus, and de-emphasise terms that are
common. To further enhance this effect, we repre-
sent terms by existence-based rather than frequency-
based features.

An example of a (tokenised) high-idf sentence
pair from CONVOTE is (with the speaker, party affil-
iation and vote shown in each case, and the high-idf
token underlined):

(1) the president s top counselor dan bartlett said
this week that there is no magic wand to
reduce gas prices . [CROWLEY, JOE (D);
AGAINST]

(2) mr. chairman , yesterday the president said , i
wish i could simply wave a magic wand and
lower gas prices tomorrow. [EMANUEL,
RAHM (D); AGAINST]

An example for BITTERLEMONS is:

(3) Even if we /wanted/ to succumb to Israeli
pressure, it is impossible to make a Palestinian
teach his child that Jaffa or Haifa or Palestine
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Figure 1: Dual classifier with similarity-based links.

before 1948 was not his land. [AHMAD HARB

(GUEST); PALESTINIAN]

(4) This is being neglected and Sharon is having
his way in brutalizing the Palestinian people in
the hope that they will succumb and abandon
their rights. [HAIDAR ABDEL SHAFI

(GUEST); PALESTINIAN]

For other examples and more justification of this
methodology, see Burford (2013).

5 Collective Classification

Two standard approaches to collective classification
are: (1) the dual classifier approach; and (2) the it-
erative classifier approach. We briefly review these
approaches below, but refer the reader to Sen et al.
(2008), McDowell et al. (2009) and Burford (2013)
for a more detailed methodological discussion.

5.1 Dual Classifier Approach
The dual classifier approach is made up of three
steps, as depicted in Figure 1:

1. Base classification: Produce base classifica-
tions using (1) a content-only classifier; and
(2) a relationship classifier. The content-
only classifier makes a binary prediction: FOR

and AGAINST for CONVOTE, and ISRAELI or
PALESTINIAN for BITTERLEMONS. The rela-
tionship classifier indicates the preference that
each document pair be SAME or not (SAME).

2. Normalisation: Normalise the scores, pro-
ducing values for the classification preference
functions, ψi, which can be input into a collec-
tive classification algorithm.

3. Decoding: Produce final classifications by op-
timally decoding the content-only and relation-
ship level preferences using a collective classi-
fication algorithm.

5.1.1 Base classification
For our content-only base classifier, we use the

same bag-of-words SVM with binary (existence-
based) unigram features as (Thomas et al., 2006).
This classifier has been shown to be the best bag-
of-words model for BITTERLEMONS (Beigman Kle-
banov et al., 2010). As our relationship base classi-
fier, we use the cosine similarity scores described
above, calculated using n-grams of several different
lengths.

5.1.2 Normalisation
We use probabilistic SVM normalisation to con-

vert the signed decision-plane distance output by the
content-only classifier into the probability that the
instance is in the positive class (Platt, 1999).

For the relationship classifier, the technique used
to convert the cosine similarity score into a clas-
sification preference needs to fit complex criteria.
Preliminary experiments suggested that while the
very highest similarity scores are good indicators
of SAME relationships, classifier precision drops
quickly as recall increases. To avoid polluting
the classification graph with large numbers of low-
quality links, the normalisation method should in-
corporate a threshold that discards a significant pro-
portion of the test set pairs. We adopt the follow-
ing binning technique to convert the cosine similar-
ity score into a probability that the two instances are
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SAME:

ψij(l, l) =


0.9 s(i, j) ≥ b1;
0.8 b2 ≤ s(i, j) < b1;
0.7 b3 ≤ s(i, j) < b2;
0.6 b4 ≤ s(i, j) < b3;
0.5 s(i, j) < b4;

where ψij(l, l) represents the SAME preference (i.e.
the probability of i and j having the same label);
the values for b1, b2, b3, and b4 are derived by sort-
ing the relationships in the training data by similar-
ity score, and separating them into intervals holding
a proportion of SAME pairs equivalent to the nomi-
nated probability. This approach is similar to unsu-
pervised discretisation (Kotsiantis and Kanellopou-
los, 2006), except the intervals are arranged so that
the output categories have a probabilistic interpreta-
tion.

5.1.3 Decoding
Decoding is carried out using three techniques:

(1) loopy belief propagation (McDowell et al.,
2009); (2) mean-field; and (3) minimum-cut.

Loopy Belief Propagation
Loopy belief propagation is a message passing al-

gorithm that can be expressed as:

mi→j(l) =

α
∑
l′∈L

ψi(l′)ψij(l′, l) ∏
k∈Ni∩DU\{j}

mk→i(l′)


bi(l) = αψi(l)

∏
k∈Ni∩DU

mk→i(l)

where mi→j is a message sent by document di to
document dj , and α is a normalization constant that
ensures that each message and each set of marginal
probabilities sum to 1. The message flow from di
to dj communicates the belief of di about the label
of dj . The algorithm proceeds by making each node
communicate with its neighbours until the messages
stabilise. The marginal probability is then derived
by calculating bi(l).

Loopy belief propagation was used in early col-
lective classification work (Taskar et al., 2002) and
has remained popular since (Sen et al., 2008; Mc-
Dowell et al., 2009; Stoyanov and Eisner, 2012).

Mean-field
Mean-field is an alternative message passing al-

gorithm, that can be expressed as:

bi(l) = αψi(l)
∏

j∈Ni∩D

∏
l′∈L

ψ
bi(l

′)
ij (l′, l)

and is re-computed for each document until the
marginal probabilities stabilise.

Loopy belief propagation and mean-field have
both been justified as variational methods for
Markov random fields (Jordan et al., 1999; Weiss,
2001; Yedidia et al., 2005).

Minimum Cut
The minimum-cut technique involves formulating

a binary collective classification task as a flow graph
and finding solutions using standard methods for
solving minimum-cut (maximum-flow) problems.

We use the method described by Blum and
Chawla (2001) in an in-sample setting, which is
equivalent to finding the optimal solution for the cost
function for labellings:

cost(Y ) =
∑
di∈D

wi(Yi) +
∑

(di,dj)∈E:Yi 6=Yj

wr(di, dj)

5.1.4 Tuning
The relative weights given to the content-only and

relational classifiers can be tuned as follows (for
CONVOTE, without loss of generality):

ψ′i(FOR) = ψi(FOR)+
min(0,γ)(ψi(FOR)−ψi(AGAINST))

2

ψ′ij(FOR, FOR) = ψij(FOR, FOR)−
max(0,γ)(ψij(FOR,FOR)−ψij(FOR,AGAINST))

2

where ψ′i and ψ′ij refer to the dampened versions of
the content-only and relationship preference func-
tions, respectively, γ is the dampening parameter
∈ [−1, 1], ψ′i(AGAINST) = 1− ψ′i(FOR),
ψ′ij(AGAINST,AGAINST) = ψ′ij(FOR, FOR), and
ψ′ij(FOR,AGAINST) = ψ′ij(AGAINST, FOR) = 1−
ψ′ij(FOR, FOR).

This approach works by reducing the difference
between the preferences for the two classes (FOR or
AGAINST) by an amount that is proportional to the
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absolute value of the dampening parameter. If the
dampening parameter is < 0, only the content-only
preferences will be dampened (giving more relative
weight to relationship preferences). If the dampen-
ing parameter is > 0, only the relationship prefer-
ences will be dampened (giving more relative weight
to the content-only preferences).

For CONVOTE, the training fold is adapted for
tuning by use of 52-fold cross-validation, where
each of the 52 debates in the training fold is classi-
fied using all of the other debates as training data.
BITTERLEMONS does not have internal structure
within the training set, so it cannot be adapted in this
way. Instead, we use leave-one-out cross-validation
over the training set. Unfortunately this approach
carries the risk of producing base classifications that
are unrealistically accurate, because the training set
is composed of articles by only two authors.

5.2 Iterative Classifier Approach
The iterative classifier approach has three major
components, as depicted in Figure 2:

1. Base classification. Produce base classifica-
tions using a content-only classifier. As with
the dual classifier approach, the content-only
classifier will give the preference that each in-
stance be classified with FOR or AGAINST for
CONVOTE, and ISRAELI or PALESTINIAN for
BITTERLEMONS.

2. Addition of relational features. Produce lo-
cal vectors by adding relational features to the
vectors previously used for content-only classi-
fication.

3. Iterative re-classification. Use a local classi-
fier to classify the new feature vectors. Update
the relational features after each iteration to re-
flect new class assignments. Repeat until class
assignments stabilise or a threshold number of
iterations is met.

5.2.1 Base Classification
Once again, content-only classification for the it-

erative classifier is performed using a bag-of-words
SVM with binary unigram features.

5.2.2 Relational Features
Let, fs be an average similarity score:

fs(i, l) =

∑
dj∈D\{di} s(i, j)δYj ,l∑

dj∈D\{di} δYj ,l
(5)

where δ is the Kronecker delta. Put in words, fs is
the average of the similarity scores for the pairings
of the given instance with each of the instances that
have the label l.

We derive relational features for the iterative clas-
sifier from the average similarity score as follows:

fas(i, l) =
{

1 fs(i, l) > fs(i, l′);
0 otherwise.

This means that the feature fas(i, l) is set to 1 iff
the average similarity of document di to instances
with label l is greater than its average similarity to
instances with label l′. In training, document la-
bels are used when counting negative and positive
instances to determine the values for fas. In evalu-
ation, the classes assigned in the previous iteration
are used.

6 Experiments

We assess the accuracy of the dual classifier and it-
erative classifier approaches described above over
CONVOTE and BITTERLEMONS in terms of classifi-
cation accuracy, micro-averaging across the 53 folds
of cross-validation in the case of CONVOTE. When
quoted, statistical significance has been determined
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Type Description
n-gram size

1 2 3 4 5
Baseline Majority 51.44 51.44 51.44 51.44 51.44
Baseline Content-only 76.40 76.40 76.40 76.40 76.40
Dual Cosine similarity, min-cut 75.22 77.22? 76.52 77.28? 77.46?
Dual Cosine similarity, loopy belief 75.10 74.99 75.10 75.46 76.16
Dual Cosine similarity, mean-field 75.10 74.99 75.10 75.46 76.63
Iterative Average similarity score 77.99? 78.10? 78.81? 79.05? 78.16?

Table 3: Collective classification performance on CONVOTE (? signifies a statistically significant improve-
ment over the content-only baseline, p < 0.05).

Type Description
n-gram size

1 2 3 4 5
Baseline Majority 49.83 49.83 49.83 49.83 49.83
Baseline Content-only 86.53 86.53 86.53 86.53 86.53
Dual Cosine similarity, min-cut 87.88 88.55? 88.89? 89.90? 90.57?
Dual Cosine similarity, loopy belief 87.54 86.87 87.88 87.88 88.55
Dual Cosine similarity, mean-field 87.54 86.87 87.88 87.88 88.55
Iterative Average similarity score 87.54 89.90? 90.91? 90.91? 89.90?

Table 4: Collective classification performance on BITTERLEMONS (? signifies a statistically significant
improvement over the content-only baseline, p < 0.05).

using approximate randomisation with p < 0.05
(Nooreen, 1989).

Two baseline scores are shown in the tables for
collective classification results: (1) “Majority” gives
the performance of the simplest possible classifier,
which classifies every instance with the label that
is most frequent in training data; and (2) “Content-
only” gives the performance of the bag-of-words
linear-kernel SVM used to perform base classifica-
tion.

6.1 Collective Classifier Performance
Table 3 shows the overall collective classifier per-
formance on CONVOTE. The best performer is the
iterative classifier with 4-grams, with an accuracy
of 79.05%. This is a statistically significant 2.65%
absolute gain over the content-only baseline. The
iterative classifier is the best performer in general,
obtaining the next four best results with statistically
significant absolute gains of 2.41%, 1.76%, 1.70%
and 1.59% for 3-grams, 5-grams, 2-grams and 1-
grams respectively.

The dual classifier with minimum-cut is the next

best performer, with a best score of 77.45% for
5-grams, a statistically significant absolute gain of
1.06%. 4-grams and 2-grams also provide statisti-
cally significant gains, but 3-grams and 1-grams do
not.

For loopy-belief and mean-field the story is less
positive. None of the variations gives a statistically
significant improvement over the content-only base-
line. The best performer is mean-field with 5-grams,
with a score of 76.63, a 0.23% absolute improve-
ment over the baseline.

Table 4 shows overall collective classifier perfor-
mance on BITTERLEMONS. As with CONVOTE, the
best performer is the iterative classifier. 4-grams and
3-grams are the top-performing variants, obtaining a
score of 90.91%, a statistically significant 4.38% ab-
solute gain over the content-only baseline. 2-grams
and 5-grams are the next best, with a statistically sig-
nificant 3.37% absolute gain over the content-only
baseline. 1-grams are the only iterative classifier
variant that do not yield a statistically significant im-
provement over the content-only baseline.

The dual classifier results for BITTERLEMONS
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warrant special comment. As mentioned in Sec-
tion 5.1.4, leave-one-out tuning with the BITTER-
LEMONS training corpus is compromised. The aim
of cross-validation on the training set is to gain a
picture of likely performance on the test set. Un-
fortunately, BITTERLEMONS is not homogeneous:
articles in each class in the training set are con-
tributed by just one author, whereas articles in the
test set are contributed by different authors. Tuning
on BITTERLEMONS failed because leave-one-out on
the training set produced 100% accuracy, presum-
ably because there are features specific to the two
authors that make classification easy. This meant
that the ideal dampening parameter was found to be
exactly 1, i.e. collective classification was unneces-
sary, because the expected performance on the test
set was 100%.

As with CONVOTE, none of the loopy belief or
mean-field variants provide statistically significant
improvements over the content-only baseline. The
best performers are mean-field and loopy belief with
5-grams, with a score of 88.55%, a 2.02% absolute
improvement over the baseline.

6.2 Dual Classifier Dampening Response
We next examine the dampening response of the
dual classifier methods, by presenting six graphs
showing the performance of the three different de-
coding algorithms on the two test corpora. This
analysis helps to establish a picture of the limita-
tions of the dual classifier approach in comparison
with the iterative classifier approach.

Each of the graphs in this section shows the ef-
fect of a varying dampening factor on classification
accuracy. In each graph only a small portion of the
[−1, 1] range supported by the dampening parameter
is shown. The reason for this is visible on many of
the graphs: performance is fixed at or near 50% un-
til the dampening parameter is close to 1. This indi-
cates that the probabilities of the content-only classi-
fier and relationship classifier are badly mismatched:
performance only becomes reasonable after the rela-
tionship preferences have been massively reduced in
strength relative to the content-only preferences.

Figure 3 shows performance on CONVOTE for
minimum-cut, loopy belief, and mean-field respec-
tively. The trend is the same in each: performance
is flat until a sudden jump-up, leading to steady im-
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Figure 3: The impact of the dampening factor on
dual classifier performance for CONVOTE.

provement up to a peak, shortly before the maximum
dampening value of 1. At 1, the relationship prefer-
ences are entirely dampened and performance is the
same as the content-only baseline.

For minimum-cut, 1-grams provide the highest
peak accuracy with close to 78% at dampening fac-
tor 0.93. Each of the other n-gram orders jumps
above the 76.40% baseline at close to this point, with
5-grams providing the most sustained period of high
performance from dampening factor 0.85 through to
almost 1.

Performance is worse for loopy belief and mean-
field. Only 5-grams do better than the baseline, be-
tween approximately 0.92 and 0.95 dampening fac-
tor for both algorithms.

Figure 4 shows performance on BITTERLEMONS
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Figure 4: The impact of the dampening factor on
dual classifier performance for BITTERLEMONS.

for minimum-cut, loopy belief, and mean-field re-
spectively. The trend is the same: after a pe-
riod of flat performance, scores steadily improve as
the dampening factor is increased, reaching a peak
shortly before the maximum dampening value of 1.

For minimum-cut, 5-grams give the best perfor-
mance with a peak of 90.57% accuracy at damp-
ening factor 0.95. 4-grams do the next best, fol-
lowed by 3-grams, 2-grams and 1-grams. Each al-
gorithm rises to a sudden peak and then trails off as
it approaches maximum dampening. Loopy belief
and mean-field give almost identical performance.
Both show the same peak-and-trail-off shape as with
minimum-cut but the performance gain is smaller,
with 5-grams obtaining a best score of 88.55%.

7 Conclusion and Future Work

The collective classification experiments in this pa-
per demonstrate that useful inter-document seman-
tic relationships can be accurately predicted using
features based on matching sequences of words, i.e.
semantic relationships between pairs of documents
that can be detected based on the mutual use of par-
ticular n-grams. These semantic relationships can
be used to build collective classifiers that outperform
standard content-based classifiers.

Iterative classifiers do better than dual classifiers
at collective classification using similarity-based re-
lationships. Their superiority goes beyond measures
of performance: iterative classifiers are simpler to
implement, and more efficient. The key advantage
of the iterative classifier seems to lie in its ability to
sum up relationship information in a single average
similarity score.

Future work should consider the combination of
the methods investigated in this paper with more
advanced content-only approaches. For dual clas-
sifiers and iterative classifiers, it would be also in-
teresting to explore whether alternative base clas-
sifiers can provide better performance. For exam-
ple, confidence-weighted linear classification has
been shown to be highly effective on non-collective
document classification tasks, and could be easily
adapted for use in a dual classifier or iterative classi-
fier (Dredze et al., 2008). Finally, there is significant
scope to apply the techniques in this paper to other
collective classification tasks and to unambiguously
define the types of content for which collective doc-
ument classification with implicit inter-document re-
lationships can be expected to provide performance
gains.
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