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Abstract

A range of approaches to the representa-
tion of lexical semantics have been explored
within Computational Linguistics. Two of the
most popular are distributional and knowledge-
based models. This paper proposes hybrid
models of lexical semantics that combine the
advantages of these two approaches. Our mod-
els provide robust representations of synony-
mous words derived from WordNet. We also
make use of WordNet’s hierarcy to refine the
synset vectors. The models are evaluated on
two widely explored tasks involving lexical
semantics: lexical similarity and Word Sense
Disambiguation. The hybrid models are found
to perform better than standard distributional
models and have the additional benefit of mod-
elling polysemy.

1 Introduction

The representation of lexical semantics is a core prob-
lem in Computational Linguistics and a variety of
approaches have been developed. Two of the most
widely explored have been knowledge-based and dis-
tributional semantics.

Knowledge-based approaches make use of some
external information source which defines the set of
possible meanings for each lexical item. The most
widely used information source is WordNet (Fell-
baum, 1998), although other resources, such as Ma-
chine Readable Dictionaries, thesaurii and ontologies
have also been used (see Navigli (2009)).

One advantage of these resources is that they rep-
resent the various possible meanings of lexical items

which makes it straightforward to identify ones that
are ambiguous. For example, these resources would
include multiple meanings for the word ball includ-
ing the ‘event’ and ‘sports equipment’ senses. How-
ever, the fact that there are multiple meanings as-
sociated with ambiguous lexical items can also be
problematic since it may not be straightforward to
identify which one is being used for an instance of an
ambiguous word in text. This issue has lead to signif-
icant exploration of the problem of Word Sense Dis-
ambiguation (Ide and Véronis, 1998; Navigli, 2009).

More recently distributional semantics has become
a popular approach to representing lexical semantics
(Turney and Pantel, 2010; Erk, 2012). These ap-
proaches are based on the premise that the semantics
of lexical items can be modelled by their context
(Firth, 1957; Harris, 1985). Distributional seman-
tic models have the advantages of being robust and
straightforward to create from unannotated corpora.
However, problems can arise when they are used to
represent the semantics of polysemous words. Distri-
butional semantic models are generally constructed
by examining the context of lexical items in unanno-
tated corpora. But for ambiguous words, like ball,
it is not clear if a particular instance of the word in
a corpus refers to the ‘event’, ‘sports equipment’ or
another sense which can lead to the distributional se-
mantic model becoming a mixture of different mean-
ings without representing any of the meanings indi-
vidually.

This paper proposes models that merge elements
of distributional and knowledge-based approaches to
lexical semantics and combines advantages of both
techniques. A standard distributional semantic model
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is created from an unannotated corpus and then re-
fined using WordNet. The resulting models can be
viewed as enhanced distributional models that have
been refined using the information from WordNet
to reduce the problems caused by ambiguous terms
when models are created. Alternatively, it can be used
as a version of the WordNet hierarchy in which dis-
tributional semantic models are attached to synsets.
Thereby creating a version of WordNet for which the
appropriate synsets can be identified more easily for
ambiguous lexical items that occur in text.

We evaluate our models on two standard tasks: lex-
ical similarity and word sense disambiguation. Re-
sults show that the proposed hybrid models perform
consistently better than traditional distributional se-
mantic models.

The reminder of the paper is organised as follows.
Section 2 describes our hybrid models which com-
bine information from WordNet and a standard dis-
tributional semantic model. These models are aug-
mented using Latent Semantic Analysis and Canoni-
cal Correlation Analysis. Sections 3 and 4 describe
evaluation of the models on the word similarity and
word sense disambiguation tasks. Related work is
presented in Section 5 and conclusions in Section 6.

2 Semantic Models

First, we consider a standard distributional seman-
tic space to represent words as vectors (Section 2.1).
Then, we make use of the WordNet’s clusters of syn-
onyms and hierarchy in combination with the stan-
dard distributional space to build hybrid models (Sec-
tion 2.2) which are augmented using Latent Semantic
Analysis (Section 2.3) and Canonical Correlation
Analysis (Section 2.4).

2.1 Distributional Model

We consider a semantic space D, as a word by con-
text feature matrix, L × C. Vector representations
consist of context features C in a reference corpus.
We made use of pre-computed publicly available vec-
tors1 optimised for word similarity tasks (Baroni et
al., 2014). Word co-occurrence counts are extracted
using a symmetric window of two words over a cor-
pus of 2.8 billion tokens obtained by concatenating

1http://clic.cimec.unitn.it/composes/
semantic-vectors.html

ukWaC, the English Wikipedia and the British Na-
tional Corpus. Vectors are weighted using positive
Pointwise Mutual Information and the set of context
features consists of the top 300K most frequent words
in the corpus.

2.2 Hybrid Models

2.2.1 Synset Distributional Model
We assume that making use of information about

the structure of WordNet can reduce noise introduced
in vectors of D due to polysemy. We make use of
all noun and verb synsets (excluding numbers and
compounds) that contain at least one of the words in
L to create a vector-based synset representation, H .
Where H is a synset by context feature matrix, i.e.
S×C. Each synset vector is generated by computing
the centroid of its lemma vectors in S (i.e. the sum
of the lemma’s vectors normalised by the number of
the lemmas in the synset). For example, the vector of
the synset car.n.01 is computed as the centroid of its
lemma vectors, i.e. car, auto, automobile, machine
and motorcar (see Figure 1).

2.2.2 Synset Rank Model
The Synset Distributional Model provides a vector

representation for each synset in WordNet which is
created using information about which lemmas share
synset membership. An advantage of this approach
is that vectors from multiple lemmas are combined to
form the synset representation. However, a disadvan-
tage is that many of these lemmas are polysemous
and their vectors represent multiple senses, not just
the one that is relevant to the synset. For example,
in WordNet the lemma machine has several possi-
ble meanings, only one of which is a member of the
synset car.n.01.

WordNet also contains information about the re-
lations between synsets, in the form of the synset
hierarchy, which can be exploited to re-weight the
importance of context features for particular synsets.
We employ a graph-based algorithm that makes use
of the WordNet is-a hierarchy. The intuition behind
this approach is that context features that are relevant
to a given synset are likely to be shared by its neigh-
bours in the hierarchy while those that are not rele-
vant (i.e. have been introduced via an irrelevant sense
of a synset member) will not be. The graph-based
algorithm increases the weight of context features
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Figure 1: In the Synset Distributional Model the vector representing a synset (white box) is computed as the
centroid of its lemma vectors (grey boxes)

that synsets share with neighbours and reduces those
that are not shared.

PageRank (Page et al., 1999) is a graph-based algo-
rithm for identifying important nodes in a graph that
has been applied to a range of NLP tasks including
word sense disambiguation (Agirre and Soroa, 2009)
and keyword extraction (Mihalcea and Tarau, 2004).

Let G = (V,E) be a graph with a set of vertices,
V , denoting synsets and a set of edges, E, denoting
links between synsets in the WordNet hierarchy. The
PageRank score (Pr) over G for a synset (Vi) can be
computed by the following equation:

Pr(Vi) = d ·
∑

Vj∈I(Vi)

1

O(Vj)
Pr(Vj) + (1 − d)v (1)

where I(Vi) denotes the in-degree of the vertex Vi

and O(Vj) is the out-degree of vertex Vj . d is the
damping factor which is set to the default value of
d = 0.85 (Page et al., 1999). In standard PageRank
all elements of the vector v are the same, 1

N where
N is the number of nodes in the graph.

Personalised PageRank (PPR) (Haveliwala et al.,
2003) is a variant of the PageRank algorithm in which
extra importance is assigned to certain vertices in the
graph. This is achieved by adjusting the values of
the vector v in equation 1 to prefer certain nodes.
The values in v effectively initialises the graph and
assigning high values to nodes in v makes them more
likely to be assigned a high PPR score.

For each context feature c in C if c ∈ LM where
LM contains all the lemma names of synsets in S,
we apply PPR to assign importance to synsets. The
score of each synset Sc in the personalisation vector

v, is set to 1
|Sc| where |Sc| is the number of synsets

that context feature i belongs. The personalisation
value of all the other sysnets is set to 0.

We apply PPR over WordNet for each context
feature using UKB (Agirre et al., 2009) and obtain
weights for each synset-context feature pair resulting
to a new semantic space Hp, S × C, where vector
elements are weighted by PageRank values. Figure 2
shows how the synset scores are computed by ap-
plying PPR over WordNet given the context feature
car. Note that we use the context features of the
distributional model D.

2.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990; Landauer and Dumais, 1997) has been used to
reduce the dimensionality of semantic spaces lead-
ing to improved performance. LSA applies Sin-
gular Value Decomposition (SVD) to a matrix X ,
W × C, which represents a distributional semantic
space. This is a form of factor analysis where X is
decomposed into three other matrices:

X = UΣV T (2)

where U is a W ×W matrix of row vectors where its
columns are eigenvectors of XXT , Σ is a diagonal
W × C matrix containing the singular values and V
is a C × C matrix of context feature vectors where
its columns are eigenvectors of XTX . The multi-
plication of the three component matrices results in
the original matrix, X . Any matrix can be decom-
posed perfectly if the number of singular values is
no smaller than the smallest dimension of X . When
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Figure 2: In the Synset Rank Model, each synset (grey boxes) is assigned with a score by computing PPR
over WordNet. The personalisation vector (grey array) is initialised by assigning probabilities only to the
synsets that include the context feature as a lemma name.

fewer singular values are used then the matrix prod-
uct is an approximation of the original matrix. LSA
reduces the dimensionality of the SVD by deleting
coefficients in the diagonal matrix Σ starting with the
smallest. The approximation of matrix X retaining
the K largest singular values, X̃ , is then given by:

X̃ ≈ UKΣKV
T
K (3)

where UK is a W ×K matrix of word vectors, ΣK

is a K ×K diagonal matrix with singular values and
VK is a K × C matrix of context feature vectors.

We apply LSA on the Synset Distributional Model,
H and the Synset Rank model, Hp to obtained the
reduced semantic spaces H̃ and H̃p respectively.

2.4 Joint Representation using CCA
Recent work has demonstrated that distributional
models can benefit from combining alternative views
of data (see Section 5). H and Hp provide two dif-
ferent views of the synsets and we incorporate evi-
dence from both to learn a joint representation using
Canonical Correlation Analysis (CCA) (Hardoon et
al., 2004). Given two multidimensional variables x
and y, CCA finds two projection vectors by max-
imising the correlations of the variables onto these
projections. The function to be maximised is:

ρ =
E[xy]√
E[x2]E[y2]

(4)

The dimensionality of the projection vectors is lower
or equal to the dimensionality of the original vari-
ables.

The computation of CCA directly over H and Hp
is computationally infeasible because of their high
dimensionality (300K). We apply CCA over the re-
duced spaces learned using LSA, H̃ and H̃p to ob-
tain two joint semantic spaces following a similar
approach to Faruqui and Dyer (2014). These are
the spaces H∗, resulting from the projection of the
Synset Distributional Model H̃ , and H∗p , resulting
from the projection of the Synset Rank Model H̃p.

3 Word Similarity

3.1 Computing Similarity
Since hybrid models represent words as synset vec-
tors, similarity between two words can be computed
following two ways. First, we compute similarity be-
tween two words as the maximum of their pairwise
synset similarity. On the other hand, similarity can be
computed as the average pairwise synset similarity
using the synsets that the two words belong. Similar-
ity is computed as the cosine of the angle between
word or synset vectors.

3.2 Data
We make use of six standard data sets that have been
widely used for evaluating lexical similarity and relat-
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Max

Model WS-353 WS-Sim WS-Rel RG MC MEN

Distributional Model

D 0.62 0.70 0.59 0.79 0.72 0.72

Hybrid Models - Full

H 0.49 0.60 0.36 0.69 0.64 0.58

Hp 0.58 0.67 0.49 0.82 0.86 0.63

Hybrid Models - LSA

H̃ 0.55 0.69 0.42 0.71 0.71 0.54

H̃p 0.58 0.68 0.46 0.85 0.86 0.55

Hybrid Models - CCA

H∗ 0.67 0.76 0.57 0.81 0.79 0.72

H∗p 0.52 0.62 0.41 0.86 0.80 0.56

Table 1: Spearman’s correlation on various data sets. Maximum similarity between pairs of synsets.

edness. First, we make use of WS-353 (Finkelstein
et al., 2001) which contains 353 pairs of words an-
notated by humans. Furthermore, we make use of
the similarity (WS-Sim) and relatedness (WS-Rel)
pairs of words created by Agirre et al. (2009) from
the original WS-353 data set.

We also made use of the RG (Rubenstein and
Goodenough, 1965) and MC (Miller and Charles,
1991) data sets which contain 65 and 30 pairs of
nouns respectively. Finally, we make use of the larger
MEN data set (Bruni et al., 2012) which contains
3,000 pairs of words that has been used as image
tags. Annotations are obtained using croudsourcing.

3.3 Model Parameters

The parameters we need to tune are the number of
the top components in LSA spaces, H̃ and H̃p, and
CCA spaces, H∗ and H∗p . For the LSA spaces, we
tune the number of the top k components in RG. We
set k ∈ {50, 100, ..., 1000} and select the value that
maximises performance which is k = 700 for H̃ and
k = 650 for H̃p. For the joint spaces learned using
CCA, we also tune the number of the top l correlated
features in RG. We set l ∈ {10, 20, ..., 650} and
select the value that maximises performance which

is l = 250 for H∗ and l = 40 for H∗p .

3.4 Evaluation Metric

Performance is measured as the correlation between
the similarity scores returned by each proposed
method and the human judgements. This is the stan-
dard approach to evaluate word and text similarity
tasks, e.g. (Budanitsky and Hirst, 2001; Agirre et
al., 2009; Agirre et al., 2012). Our experiments use
Spearman’s correlation coefficient.

3.5 Results

Table 1 shows the Spearman’s correlation of simi-
larity scores generated by each model and human
judgements of similarity across various data sets by
taking the maximum pairwise similarity score of two
words’ synsets. The first row of the table shows the
results obtained by the word distributional model
of Baroni et al. (2014). The full hybrid models H
and Hp perform consistently worse than the orig-
inal distributional model D across data sets. The
main reason is that a large number of synsets contain
only one lemma name which might be polysemous.
For example, the only lemma name of the synsets
‘ball.n.01’ (‘round object that is hit or thrown or
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Average

Model WS-353 WS-Sim WS-Rel RG MC MEN

Distributional Model

D 0.62 0.70 0.59 0.79 0.72 0.72

Hybrid Models - Full

H 0.61 0.71 0.52 0.72 0.65 0.64

Hp 0.65 0.73 0.56 0.79 0.81 0.58

Hybrid Models - LSA

H̃ 0.59 0.70 0.48 0.68 0.68 0.63

H̃p 0.65 0.73 0.56 0.81 0.86 0.58

Hybrid Models - CCA

H∗ 0.70 0.77 0.64 0.78 0.84 0.74

H∗p 0.61 0.69 0.52 0.72 0.76 0.62

Table 2: Spearman’s correlation on various data sets. Average pairwise similarity between pairs of synsets.

kicked in games’) and ‘ball.n.04’ (‘the people as-
sembled at a lavish formal dance’) is ‘ball’. In this
case, the synset vector in H and the lemma vector in
D are identical and still polysemous. This problem
does not hold in Hp and therefore the correlations
are higher for that semantic space but still lower than
those obtained for D. Applying LSA on H and Hp
improves results but correlations are still lower than
those obtained using D2. On the other hand, the
joint space learned by applying CCA, H∗, produces
consistently better similarity estimates than D while
outperforms all the other models in the majority of
the data sets. That confirms our main assumption
than incorporating information obtained from a large
corpus and a knowledge-base improves word vector
representations.

Table 2 shows the Spearman’s correlation of sim-
ilarity scores generated by each model and human
judgements of similarity across various data sets by
taking the average pairwise similarity score of two
words’ synsets. Results show that using the average
rather than the maximum system similarity improves
results for almost all data sets. For example, the best

2Note that Baroni et al. (2014) found that applying SVD to
D did not improve performance over using the full space.

hybrid model, H∗, achieves correlations that are be-
tween 2% and 12% than D for the majority of data
sets, although performance is 1% lower for the RG
data set. This improved performance suggest that hu-
man judgements of word similarity are based on the
relation between all the senses of two given words
rather than just the most similar ones.

4 Word Sense Disambiguation

4.1 Data

We test the efficiency of our hybrid models on the
English All Words tasks of Senseval-2 (Palmer et
al., 2001) and Senseval-3 (Snyder and Palmer, 2004),
two standard data sets for evaluating WSD. Our ex-
periments focus on the disambiguation of nouns in
these data sets.

4.2 Word Sense Tagging

A simple approach to all-words WSD was imple-
mented in which each sense of an ambiguous word
is compared against its context and the most similar
chosen.

For example suppose that we want to disambiguate
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Nouns Senseval-2 Senseval-3

Precision Recall Precision Recall

Hybrid Models - Full

H 0.46 0.45 0.37 0.36

Hp 0.65 0.63 0.50 0.48

Hybrid Models - LSA

H̃ 0.45 0.44 0.39 0.37

H̃p 0.60 0.58 0.46 0.45

Hybrid Models - CCA

H∗ 0.44 0.43 0.36 0.34

H∗p 0.61 0.60 0.48 0.46

Table 3: Results obtained by hybrid models on SenseEval-2 and SenseEval-3 data sets (nouns only).

the word bank in the following sentence:

“Banks provide payment services.”

Assume that the word bank consists of two senses
‘bank.n.01’ and bank.n.02 defined as ‘sloping land
(especially the slope beside a body of water)’ and “a
financial institution that accepts deposits and chan-
nels the money into lending activities’ respectively.

First we consider the vectors of all the possible
noun synsets containing the word bank as a synset
name. Then for each context word (provide, payment
and service) that exists in our semantics spaces we
compute a centroid vector from its constituent senses.
Finally, we compute a context vector for the entire
context by summing up all the context word vectors.
We select the synset of the target word that its vector
has the highest cosine similarity to the context vector.

4.3 Model Parameters

The parameters we need to tune are the same as for
the word similarity task and we use the best settings
obtained for that task. We also experimented with
varying the number of surrounding sentences used
as context by testing values between ±1 and ±4.
The best performance was obtained using a context
created from the sentence containing the target word
and ±1 sentences surrounding it.

4.4 Evaluation Metrics

Word sense disambiguation systems are evaluated by
computing precision and recall. Precision measures
the proportion of disambiguated words that have been
correctly assigned with a sense. Recall measures the
proportion of words disambiguated correctly out of
all words available for disambiguation.

4.5 Results

Table 3 shows the results obtained by using our hy-
brid models on the two word sense disambiguation
data sets. The full Synset Rank model Hp is consis-
tently better method in terms of precision and recall
in both data sets. On the other hand, it is somewhat
surprising that dimensionality reduction and integra-
tion of semantic spaces do not help in improving
performance. That is the H̃p and H∗p models achieve
lower precision and recall than the fuller Hp.

The Synset Distributional models H , H̃ and H∗

consistently fail to perform well. The difference in
precision and recall compared to the Synset Rank
models is between 12% and 19%. This suggests that
the knowledge-based weighting of the context fea-
tures generates less noisy vectors for sense tagging.

The pattern of results observed for the WSD task
is somewhat different to those obtained for word
similarity, where applying LSA and CCA improved
performance (see Section 3). The most likely expla-
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nation of this difference is that WSD requires the
model to represent the possible senses of each am-
biguous word. It is also important that these senses
correspond to the ones used in the relevant lexicon
(WordNet in this case). The Synset Rank model Hp

does this by making use of information from Word-
Net. However, these synset representations are dis-
rupted by LSA and CCA which compress the seman-
tic space by extracting general features from them.
This is not a problem for word similarity since there
is no need to model the senses found in the lexicon.

5 Related Work

Dealing with polysemy in distributional semantics
is a fundamental issue since the various senses of a
word type are conflated in a single vector. Previous
work tackled the problem through vector adaptation,
clustering and language models (Erk, 2012). Vector
adaptation methods modify a traditional (i.e. poly-
semous) target word vector by applying pointwise
operations such as addition or multiplication to that
and the surrounding words in a sentence (Mitchell
and Lapata, 2008; Erk and Padó, 2008; Thater et
al., 2011; Van de Cruys et al., 2011). Alternatively,
clustering methods have been used to cluster together
the different contexts a target word appears assum-
ing that each cluster of contexts captures a different
sense of the target word (Dinu and Lapata, 2010;
Erk and Pado, 2010; Reisinger and Mooney, 2010).
Language models have also been used to remove pol-
ysemy from word vectors by predicting words that
could replace the target word given a context (De-
schacht and Moens, 2009; Washtell, 2010; Moon
and Erk, 2013). More recently, Polajnar and Clark
(2014) applied context selection and normalisation
to improve the quality of word vectors. Our hybrid
models are related to the vector adaptation methods
since we modify the synset vectors using its lemmas’
vectors to remove noise.

Our work is also inspired by recent work on im-
proving classic distributional vector representations
of words by incorporating information from different
modalities. For example, researchers have devel-
oped methods that make use of both visual and con-
textual information to improve word vectors (Bruni
et al., 2011; Silberer et al., 2013; Lazaridou et al.,
2014). Following a similar direction, Faruqui and

Dyer (2014) found that learning joint spaces from
multilingual vector spaces using CCA improves the
performance of standard monolingual vector spaces
on semantic similarity. Fyshe et al. (2014) showed
that integrating textual vector space models with
brain activation data when people are reading words
achieves better correlation to behavioural data than
models of one modality.

Our hybrid models are also closely related to a
supervised method proposed by Faruqui et al. (2015).
Their method refines distributional semantic mod-
els using relational information from various seman-
tic lexicons, including WordNet, by making linked
words in these lexicons to have similar vector repre-
sentations. While our models are also based on using
information from WordNet for refining vector repre-
sentations, they are fundamentally different. They
create synset vectors in an unsupervised fashion and
more importantly can be used for sense tagging.

6 Conclusions

This paper proposed hybrid models of lexical seman-
tics that combine distributional and knowledge-based
approaches and offer advantages of both techniques.
A standard distributional semantic model is created
from an unannotated corpus and then refined by (1)
using WordNet synsets to create synset vectors; and
(2) applying a graph-based technique over WordNet
to reweight synset vectors. The resulting hybrid mod-
els can be viewed as enhanced distributional models
using the information from WordNet to reduce the
problems caused by ambiguous terms when models
are created. Results show that our models perform
better than traditional distributional models on lex-
ical similarity tasks. Unlike standard distributional
approaches the techniques proposed here also model
polysemy and can be used to carry out word sense
disambiguation.
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