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Abstract

This paper describes Team UWM’s sys-
tem for the Task 7 of SemEval 2014 that
does disorder mention extraction and nor-
malization from clinical text. For the dis-
order mention extraction (Task A), the sys-
tem was trained using Conditional Ran-
dom Fields with features based on words,
their POS tags and semantic types, as well
as features based on MetaMap matches.
For the disorder mention normalization
(Task B), variations of disorder mentions
were considered whenever exact matches
were not found in the training data or in
the UMLS. Suitable types of variations
for disorder mentions were automatically
learned using a new method based on edit
distance patterns. Among nineteen partic-
ipating teams, UWM ranked third in Task
A with 0.755 strict F-measure and second
in Task B with 0.66 strict accuracy.

1 Introduction

Entity mention extraction is an important task in
processing natural language clinical text. Disor-
ders, medications, anatomical sites, clinical pro-
cedures etc. are among the entity types that pre-
dominantly occur in clinical text. Out of these,
the Task 7 of SemEval 2014 concentrated on ex-
tracting (Task A) and normalizing (Task B) dis-
order mentions. Disorder mention extraction is
particularly challenging because disorders are fre-
quently found as discontinuous phrases in clinical
sentences. The extracted mentions were then to be
normalized by mapping them to their UMLS CUIs
if they were in the SNOMED-CT part of UMLS
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and belonged to the “disorder” UMLS seman-
tic group, otherwise they were to be declared as
“CUI-less”. This normalization task is challeng-
ing because disorder names are frequently men-
tioned in modified forms which prevents their ex-
act matching with concept descriptions in UMLS.

Our team, UWM, participated in both Task
A and Task B. We modelled disorder mention
extraction as a standard sequence labeling task.
The model was trained using Conditional Ran-
dom Fields (Lafferty et al., 2001) with various
types of lexical and semantic features that in-
cluded MetaMap (Aronson, 2001) matches. The
model was also inherently capable of extracting
discontinuous disorder mentions. To normalize
disorder mentions, our system first looked for ex-
act matches with disorder mentions in the train-
ing data and in the UMLS. If no exact match
was found, then suitable variations of the disorder
mentions were generated based on the commonly
used variations of disorder mentions learned from
the training data as well as from the UMLS syn-
onyms. We developed a novel method to automat-
ically learn such variations based on edit distances
(Levenshtein, 1966) which is described in the next
section.

Our Team ranked third on Task A and second on
Task B in the official SemEval 2014 Task 7 evalua-
tion (considering only the best run for each team).
We also present results of ablation studies we did
on the development data in order to determine the
contributions of various features and components
of our system.

2 Methods
2.1 Task A: Disorder Mention Extraction
We modelled disorder mention extraction as a se-
quence labeling task with the standard “BIO” (Be-
gin, Inside, Outside) scheme of output labels for
sentence tokens. The tokens labelled “I” follow-
ing the latest “B” token are extracted together as
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a disorder. For example, in the following labelled
sequence “the/O left/B atrium/I is/O moderately/O
dilated/I”, “left atrium dilated” will be extracted
as a disorder. The labeling scheme thus natu-
rally models discontinuously mentioned disorders
which is one challenging aspect of the disorder
mention extraction task.

The sequence labeling model is trained using
Condition Random Fields (CRFs) (Lafferty et al.,
2001) using the five group of features shown in Ta-
ble 1. The clinical reports are first pre-processed
using Stanford CoreNLP1 for tokenization, sen-
tence segmentation and part-of-speech (POS) tag-
ging which help in obtaining the lexical features
(Group 1). The semantic features (Group 2) are
obtained by matching the tokens, along with bi-
grams and trigrams in UMLS. For the first three
features in Group 2, only the eleven semantic
types under the “disorder” semantic group are con-
sidered.2 If a token is a concept in UMLS with
“disorder” semantic group then its feature is as-
signed the value of its semantic type (for example
“congenital abnormality”, “Neoplastic process”,
etc.) otherwise it is assigned the value “Null”. The
next three features in Group 2 take Boolean values
depending upon whether the bigram or trigram is
present in UMLS as a concept or not. The last fea-
ture in Group 2 takes CUI as its value if the word
is a concept in UMLS otherwise it takes “Null” as
the value.

The features in Group 3 are obtained by running
MetaMap (Aronson, 2001). The lemmatized ver-
sion of word obtained using Stanford CoreNLP is
used as an additional feature in Group 4. Finally,
if the word is an abbreviation according to a list
of clinical abbreviations3 then its full-form is ob-
tained.4 The full-form, whether it is in UMLS,
and its semantic type (out of “disorder group”) are
used as features under Group 5. We used the CRF-
suite (Okazaki, 2007) implementation of CRFs.

2.2 Task B: Disorder Mention Normalization
The extracted disease mentions from Task A are
normalized in Task B as follows. As a first step,

1http://nlp.stanford.edu/software/
corenlp.shtml

2We found that using all semantic groups negatively af-
fected the performance.

3http://en.wikipedia.org/wiki/List_of_
medical_abbreviations

4If multiple full-forms were present then only the first one
was used. In the future, one could improve this through ab-
breviation disambiguation (Xu et al., 2012).

Group 1: Lexical
Word
Next word
Previous word
POS tag of word
POS tag of next word
POS tag of previous word
Next to next word
Previous to previous word
Length of the word
Group 2: Semantic
UMLS semantic type of word
UMLS semantic type of next word
UMLS semantic type of previous word
Bigram with next word is in UMLS
Reverse bigram with next word is in UMLS
Trigram with next two words is in UMLS
CUI of the word
Group 3: MetaMap
Word tagged as disorder by MetaMap
Next word tagged as disorder by MetaMap
Previous word tagged as disorder by MetaMap
Group 4: Lemmatization
Lemmatized version of the word
Group 5: Abbreviation
Full-form
Full-form is in UMLS
UMLS semantic type of full-form

Table 1: Features used to train the CRF model for disorder
mention extraction.

our system tries to exactly match the disease men-
tions in the training data. If they match, then the
corresponding CUI or CUI-less is the output. If
no match is found in the training data, then the
system tries to exactly match names of concepts
in UMLS including their listed synonyms.5 If a
match is found then the corresponding CUI is the
output. If the mention does not match either in the
training data or in the UMLS and if it is an ab-
breviation according to the abbreviation list (same
as used in Task A), then its full-form is used to
exactly match in the training data and in UMLS.
However, what makes the normalization task chal-
lenging is that exact matching frequently fails. We
employed a novel method that learns to do approx-
imate matching for this task.

We found that most failures in exact matching
were because of minor typographical variations
due to morphology, alternate spellings or typos.
In order to automatically learn such variations, we
developed a new method based on edit distance
which is a measure of typographical similarity be-
tween two terms. We used a particular type of
well-known edit distance called Levenshtein dis-

5In accordance to the task definition, only the concepts
listed in SNOMED-CT and of the UMLS semantic group
“disorder” are considered in this step.
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Learned Edit Distance Pattern Comments
SAME o INSERT u SAME r Change American spelling to British
INSERT s SAME space Pluralize by adding “s” before space
DELETE i DELETE e SUBSTITUTE s/y Example: “Z-plasties”→ “Z-plasty”
START SAME h INSERT a SAME e SAME m SAME o Variation: “hemo...”→ “haemo...”
DELETE space DELETE n DELETE o DELETE s END Drop “ nos” in the end
SAME s SUBSTITUTE i/e SAME s Example: “metastasis”→ “metastases”

Table 2: A few illustrative edit distance patterns that were automatically learned from UMLS and the training data.

Data used for training Task A Task B
Strict Relaxed Strict Relaxed

P R F P R F Accuracy Accuracy
Training + Development 0.787 0.726 0.755 0.911 0.856 0.883 0.660 0.909
Training 0.775 0.679 0.724 0.909 0.812 0.858 0.617 0.908

Table 3: SemEval 2014 Task 7 evaluation results for our system. Precision (P), recall (R) and F-measure (F) were measured
for Task A while accuracy was measured for Task B.

tance (Levenshtein, 1966) which is defined as the
minimum number of edits needed to convert one
term into another. The edits are in the form of in-
sertions, deletions and substitution of characters.
For example, the term “cyanotic” can be converted
into “cyanosis” in minimum two steps by substi-
tuting “t” for “s” and “c” for “s”, hence the Lev-
enshtein edit distance between these terms is two.
There is a fast dynamic programming based algo-
rithm to compute this. The algorithm also gives
the steps to change one term into another, which
for the above example will be “START SAME c
SAME y SAME a SAME n SAME o SUBSTI-
TUTE t/s SAME i SUBSTITUTE c/s END”. We
will call such a sequence of steps as an edit dis-
tance pattern.

Our method first computes edit distance pat-
terns between all synonyms of the disorder con-
cepts is UMLS6 as well as between their men-
tions in the training data and the corresponding
tagged concepts in UMLS. But these patterns are
very specific to the terms they are derived from
and will not directly apply to other terms. Hence
these patterns are generalized next. We define gen-
eralization of two edit distance patterns as their
largest contiguous common part that includes all
the edit operations of insertions, deletions and sub-
stitutions (i.e. generalization can only remove
“SAME”, “START” and “END” steps). For exam-
ple, the generalized edit distance pattern of “cyan-
otic → cyanosis” and “thrombotic → thrombo-
sis” will be “SAME o SUBSTITUTE t/s SAME i
SUBSTITUTE c/s END”, essentially meaning that
a term that ends with “otic” can be changed to end

6Due to the large size of UMLS, we restricted to the sec-
ond of the two concept files in the 2013 UMLS distribution.

with “osis”. Our method generalizes every pair of
edit distance patterns as well as repeatedly further
generalizes every pair of generalization patterns.

Not all generalization patterns may be good be-
cause some may change the meaning of terms
when applied. Hence our method also evaluates
the goodness of these patterns by counting the
number of positives and negatives. When a pat-
tern is applied to a UMLS term and the resultant
term has the same CUI then it is counted as a pos-
itive. But if the resultant term has a different CUI
then it is counted as a negative. Our system heuris-
tically only retains patterns that have the number
of positives more than the number of negatives and
have at least five positives. Our method learned to-
tal 554 edit distance patterns, Table 2 shows a few
illustrative ones.

These patterns are used as follows to normalize
disease mentions. When exact matching for a dis-
ease mention in the training data and the UMLS
fails, then our system generates its variations by
applying the learned edit distance patterns. These
variations are then searched for exact matching in
the UMLS. If even the variations fail to match then
the variations of possible full-forms (according to
the abbreviation list) are tried, otherwise the men-
tion is declared CUI-less. Note that while our
method learns variations only for disorder men-
tions, it is general and could be used to learn vari-
ations for terms of other types. Finally, because it
is a learning method and it also learns variations
used in the training data, it is capable of learning
variations that are specific to the style or genre of
the clinical notes that constitute the training data.
We note that the problem of matching variations
is analogous to the duplicate detection problem

830



in database records (Bilenko and Mooney, 2003).
But to the our best knowledge, no one has used an
approach to learn patterns of variations based on
edit distances. We used the edit-distance patterns
only for Task B in this work, in future we plan to
also use them in Task A for the features that in-
volve matching with UMLS.

3 Results
The organizers of the SemEval 2014 Task 7 pro-
vided the training, the development and the test
data containing 199, 99 and 133 clinical notes
respectively that included de-identified discharge
summaries, electrocardiogram, echocardiogram
and radiology reports (Pradhan et al., 2013). The
extraction performance in Task A was evaluated
in terms of precision, recall and F-measure for
strict (exact boundaries) and relaxed (overlapping
boundaries) settings. The normalization perfor-
mance in Task B was evaluated in terms of strict
accuracy (fraction of correct normalizations out
of all gold-standard disease mentions) and relaxed
accuracy (fraction of correct normalizations out of
the correct disease mentions extracted in Task A).
Note that a system’s strict accuracy in Task B de-
pends on its performance in Task A because if it
misses to extract a disease mention in Task A then
it will get zero score for its normalization.

Table 3 shows the performance of our system
as determined through the official evaluation by
the organizers. The systems were evaluated on the
test data when trained using both the training and
the development data as well as when trained us-
ing just the training data. When trained using both
the training and the development data, our team
ranked third in Task A and second in Task B con-
sidering the best run of each team if they submit-
ted multiple runs. The ranking was according to
the strict F-measure for Task A and according to
the strict accuracy for Task B. When trained using
just the training data, our team ranked second in
Task A and first in Task B.

We also performed ablation study to determine
the contribution of different components of our
system towards its performance. Since the gold-
standard annotations for the test data were not
made available to the participants, we used the de-
velopment data for testing for the ablation study.
Table 4 shows the results (strict) for Task A when
various groups of features (shown in Table 1) are
excluded one at a time. It can be noted that lex-
ical group of features were most important with-

Features P R F
All 0.829 0.673 0.743
All - Lexical 0.779 0.569 0.658
All - Semantic 0.824 0.669 0.738
All - MetaMap 0.810 0.648 0.720
All - Lemmatization 0.825 0.666 0.737
All - Abbreviations 0.828 0.668 0.740

Table 4: Ablation study results for Task A showing how the
performance is affected by excluding various feature groups
(shown in Table 1). Development data was used for testing.
Only strict precision (P), recall (R) and F-measure (F) are
shown.

Component Accuracy
Training 78.1
UMLS 83.8
Training + UMLS 88.8
Training + Patterns 86.3
UMLS + Patterns 85.2
Training + UMLS + Patterns 89.5

Table 5: Performance on Task B obtained by combinations
of exactly matching the mentions in the training data, exactly
matching in the UMLS and using learned edit distance pat-
terns for approximately matching in the UMLS. Development
data was used for testing with gold-standard disease men-
tions.

out which the performance drops significantly.
MetaMap matches were the next most important
group of features. Each of the remaining feature
groups improves the performance by only small
amount.

Table 5 shows the performance on Task B when
disease mentions are exactly matched in the train-
ing data, exactly matched in the UMLS and ap-
proximately matched in the UMLS using edit dis-
tance patterns, as well as their combinations. In
order to evaluate the performance of our system
on Task B independent of its performance on Task
A, we used gold-standard disease mentions in the
development data as input for Task B in which
case the strict and relaxed accuracies are equal. It
may be noted that adding edit distance patterns im-
proves the performance in each case.

4 Conclusions
We participated in the SemEval 2014 Task 7
of disorder mention extraction and normalization
from clinical text. Our system used conditional
random fields as the learning method for the ex-
traction task with various lexical, semantic and
MetaMap based features. We introduced a new
method to do approximate matching for normal-
ization that learns general patterns of variations
using edit distances. Our system performed com-
petitively on both the tasks.
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