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Abstract

We represent natural language semantics
by combining logical and distributional in-
formation in probabilistic logic. We use
Markov Logic Networks (MLN) for the
RTE task, and Probabilistic Soft Logic
(PSL) for the STS task. The system is
evaluated on the SICK dataset. Our best
system achieves 73% accuracy on the RTE
task, and a Pearson’s correlation of 0.71 on
the STS task.

1 Introduction

Textual Entailment systems based on logical infer-
ence excel in correct reasoning, but are often brit-
tle due to their inability to handle soft logical in-
ferences. Systems based on distributional seman-
tics excel in lexical and soft reasoning, but are un-
able to handle phenomena like negation and quan-
tifiers. We present a system which takes the best
of both approaches by combining distributional se-
mantics with probabilistic logical inference.

Our system builds on our prior work (Belt-
agy et al., 2013; Beltagy et al., 2014a; Beltagy
and Mooney, 2014; Beltagy et al., 2014b). We
use Boxer (Bos, 2008), a wide-coverage semantic
analysis tool to map natural sentences to logical
form. Then, distributional information is encoded
in the form of inference rules. We generate lexical
and phrasal rules, and experiment with symmetric
and asymmetric similarity measures. Finally, we
use probabilistic logic frameworks to perform in-
ference, Markov Logic Networks (MLN) for RTE,
and Probabilistic Soft Logic (PSL) for STS.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

2 Background

2.1 Logical Semantics

Logic-based representations of meaning have a
long tradition (Montague, 1970; Kamp and Reyle,
1993). They handle many complex semantic phe-
nomena such as relational propositions, logical
operators, and quantifiers; however, they can not
handle “graded” aspects of meaning in language
because they are binary by nature.

2.2 Distributional Semantics

Distributional models use statistics of word co-
occurrences to predict semantic similarity of
words and phrases (Turney and Pantel, 2010;
Mitchell and Lapata, 2010), based on the obser-
vation that semantically similar words occur in
similar contexts. Words are represented as vec-
tors in high dimensional spaces generated from
their contexts. Also, it is possible to compute vec-
tor representations for larger phrases composition-
ally from their parts (Mitchell and Lapata, 2008;
Mitchell and Lapata, 2010; Baroni and Zampar-
elli, 2010). Distributional similarity is usually a
mixture of semantic relations, but particular asym-
metric similarity measures can, to a certain ex-
tent, predict hypernymy and lexical entailment
distributionally (Kotlerman et al., 2010; Lenci and
Benotto, 2012; Roller et al., 2014). Distribu-
tional models capture the graded nature of mean-
ing, but do not adequately capture logical struc-
ture (Grefenstette, 2013).

2.3 Markov Logic Network

Markov Logic Networks (MLN) (Richardson and
Domingos, 2006) are a framework for probabilis-
tic logic that employ weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks). Weighting the rules is a way of soft-
ening them compared to hard logical constraints.
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MLNs define a probability distribution over pos-
sible worlds, where the probability of a world in-
creases exponentially with the total weight of the
logical clauses that it satisfies. A variety of in-
ference methods for MLNs have been developed,
however, computational overhead is still an issue.

2.4 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is another recently
proposed framework for probabilistic logic (Kim-
mig et al., 2012). It uses logical representations to
compactly define large graphical models with con-
tinuous variables, and includes methods for per-
forming efficient probabilistic inference for the re-
sulting models. A key distinguishing feature of
PSL is that ground atoms (i.e., atoms without vari-
ables) have soft, continuous truth values on the
interval [0, 1] rather than binary truth values as
used in MLNs and most other probabilistic logics.
Given a set of weighted inference rules, and with
the help of Lukasiewicz’s relaxation of the logical
operators, PSL builds a graphical model defining a
probability distribution over the continuous space
of values of the random variables in the model
(Kimmig et al., 2012). Then, PSL’s MPE infer-
ence (Most Probable Explanation) finds the overall
interpretation with the maximum probability given
a set of evidence. This optimization problem is a
second-order cone program (SOCP) (Kimmig et
al., 2012) and can be solved in polynomial time.

2.5 Recognizing Textual Entailment

Recognizing Textual Entailment (RTE) is the task
of determining whether one natural language text,
the premise, Entails, Contradicts, or is not related
(Neutral) to another, the hypothesis.

2.6 Semantic Textual Similarity

Semantic Textual Similarity (STS) is the task of
judging the similarity of a pair of sentences on
a scale from 1 to 5 (Agirre et al., 2012). Gold
standard scores are averaged over multiple human
annotations and systems are evaluated using the
Pearson correlation between a system’s output and
gold standard scores.

3 Approach

3.1 Logical Representation

The first component in the system is Boxer (Bos,
2008), which maps the input sentences into logical

form, in which the predicates are words in the sen-
tence. For example, the sentence “A man is driving
a car” in logical form is:
∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧

patient(y, z) ∧ car(z)

3.2 Distributional Representation

Next, distributional information is encoded in
the form of weighted inference rules connecting
words and phrases of the input sentences T and H .
For example, for sentences T : “A man is driving
a car”, and H: “A guy is driving a vehicle”, we
would like to generate rules like ∀x. man(x) ⇒
guy(x) |w1, ∀x.car(x)⇒ vehicle(x) |w2, where
w1 and w2 are weights indicating the similarity of
the antecedent and consequent of each rule.

Inferences rules are generated as in Beltagy et
al. (2013). Given two input sentences T and H ,
for all pairs (a, b), where a and b are words or
phrases of T and H respectively, generate an infer-
ence rule: a → b | w, where the rule weight w is
a function of sim(−→a ,

−→
b ), and sim is a similarity

measure of the distributional vectors −→a ,
−→
b . We

experimented with the symmetric similarity mea-
sure cosine, and asym, the supervised, asymmet-
ric similarity measure of Roller et al. (2014).

The asym measure uses the vector difference
(−→a − −→b ) as features in a logistic regression clas-
sifier for distinguishing between four different
word relations: hypernymy, cohyponymy, meron-
omy, and no relation. The model is trained us-
ing the noun-noun subset of the BLESS data set
(Baroni and Lenci, 2011). The final similarity
weight is given by the model’s estimated probabil-
ity that the word relationship is either hypernymy
or meronomy: asym(−→a ,

−→
b ) = P (hyper(a, b))+

P (mero(a, b)).
Distributional representations for words are de-

rived by counting co-occurrences in the ukWaC,
WaCkypedia, BNC and Gigaword corpora. We
use the 2000 most frequent content words as ba-
sis dimensions, and count co-occurrences within
a two word context window. The vector space is
weighted using Positive Pointwise Mutual Infor-
mation.

Phrases are defined in terms of Boxer’s output
to be more than one unary atom sharing the same
variable like “a little kid” (little(k) ∧ kid(k)),
or two unary atoms connected by a relation like
“a man is driving” (man(m) ∧ agent(d, m) ∧
drive(d)). We compute vector representations of
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phrases using vector addition across the compo-
nent predicates. We also tried computing phrase
vectors using component-wise vector multiplica-
tion (Mitchell and Lapata, 2010), but found it per-
formed marginally worse than addition.

3.3 Probabilistic Logical Inference

The last component is probabilistic logical infer-
ence. Given the logical form of the input sen-
tences, and the weighted inference rules, we use
them to build a probabilistic logic program whose
solution is the answer to the target task. A proba-
bilistic logic program consists of the evidence set
E, the set of weighted first order logical expres-
sions (rule base RB), and a query Q. Inference is
the process of calculating Pr(Q|E,RB).

3.4 Task 1: RTE using MLNs

MLNs are the probabilistic logic framework we
use for the RTE task (we do not use PSL here as
it shares the problems of fuzzy logic with proba-
bilistic reasoning). The RTE classification prob-
lem for the relation between T and H can be
split into two inference tasks. The first is test-
ing if T entails H , Pr(H|T, RB). The second
is testing if the negation of the text ¬T entails H ,
Pr(H|¬T, RB). In case Pr(H|T, RB) is high,
while Pr(H|¬T, RB) is low, this indicates En-
tails. In case it is the other way around, this in-
dicates Contradicts. If both values are close, this
means T does not affect the probability of H and
indicative of Neutral. We train an SVM classifier
with LibSVM’s default parameters to map the two
probabilities to the final decision.

The MLN implementation we use is
Alchemy (Kok et al., 2005). Queries in Alchemy
can only be ground atoms. However, in our
case the query is a complex formula (H). We
extended Alchemy to calculate probabilities of
queries (Beltagy and Mooney, 2014). Probability
of a formula Q given an MLN K equals the ratio
between the partition function Z of the ground
network of K with and without Q added as a hard
rule (Gogate and Domingos, 2011)

P (Q | K) =
Z(K ∪ {(Q,∞)})

Z(K)
(1)

We estimate Z of the ground networks using Sam-
pleSearch (Gogate and Dechter, 2011), an ad-
vanced importance sampling algorithm that is suit-
able for ground networks generated by MLNs.

A general problem with MLN inference is
its computational overhead, especially for the
complex logical formulae generated by our ap-
proach. To make inference faster, we reduce the
size of the ground network through an automatic
type-checking technique proposed in Beltagy and
Mooney (2014). For example, consider the ev-
idence ground atom man(M) denoting that the
constant M is of type man. Then, consider an-
other predicate like car(x). In case there are no in-
ference rule connecting man(x) and car(x), then
we know that M which we know is a man cannot
be a car, so we remove the ground atom car(M)
from the ground network. This technique reduces
the size of the ground network dramatically and
makes inference tractable.

Another problem with MLN inference is that
quantifiers sometimes behave in an undesir-
able way, due to the Domain Closure Assump-
tion (Richardson and Domingos, 2006) that MLNs
make. For example, consider the text-hypothesis
pair: “There is a black bird” and “All birds are
black”, which in logic are T : bird(B)∧black(B)
and H : ∀x. bird(x) ⇒ black(x). Because of
the Domain Closure Assumption, MLNs conclude
that T entails H because H is true for all constants
in the domain (in this example, the single constant
B). We solve this problem by introducing extra
constants and evidence in the domain. In the ex-
ample above, we introduce evidence of a new bird
bird(D), which prevents the hypothesis from be-
ing true. The full details of the technique of deal-
ing with the domain closure is beyond the scope of
this paper.

3.5 Task 2: STS using PSL

PSL is the probabilistic logic we use for the STS
task since it has been shown to be an effective
approach for computing similarity between struc-
tured objects. We showed in Beltagy et al. (2014a)
how to perform the STS task using PSL. PSL
does not work “out of the box” for STS, be-
cause Lukasiewicz’s equation for the conjunction
is very restrictive. We address this by replacing
Lukasiewicz’s equation for conjunction with an
averaging equation, then change the optimization
problem and grounding technique accordingly.

For each STS pair of sentences S1, S2, we run
PSL twice, once where E = S1, Q = S2 and an-
other where E = S2, Q = S1, and output the two
scores. The final similarity score is produced from
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an Additive Regression model with WEKA’s de-
fault parameters trained to map the two PSL scores
to the overall similarity score (Friedman, 1999;
Hall et al., 2009).

3.6 Task 3: RTE and STS using Vector
Spaces and Keyword Counts

As a baseline, we also attempt both the RTE and
STS tasks using only vector representations and
unigram counts. This baseline model uses a super-
vised regressor with features based on vector sim-
ilarity and keyword counts. The same input fea-
tures are used for performing RTE and STS, but a
SVM classifier and Additive Regression model is
trained separately for each task. This baseline is
meant to establish whether the task truly requires
the sophisticated logical inference of MLNs and
PSL, or if merely checking for logical keywords
and textual similarity is sufficient.

The first two features are simply the cosine and
asym similarities between the text and hypothesis,
using vector addition of the unigrams to compute
a single vector for the entire sentence.

We also compute vectors for both the text and
hypothesis using vector addition of the mutually
exclusive unigrams (MEUs). The MEUs are de-
fined as the unigrams of the premise and hypoth-
esis with common unigrams removed. For exam-
ple, if the premise is “A dog chased a cat” and the
hypothesis is “A dog watched a mouse”, the MEUs
are “chased cat” and “watched mouse.” We com-
pute vector addition of the MEUs, and compute
similarity using both the cosine and asym mea-
sures. These form two features for the regressor.

The last feature of the model is a keyword
count. We count how many times 13 different
keywords appear in either the text or the hypoth-
esis. These keywords include negation (no, not,
nobody, etc.) and quantifiers (a, the, some, etc.)
The counts of each keyword form the last 13 fea-
tures as input to the regressor. In total, there are
17 features used in this baseline system.

4 Evaluation

The dataset used for evaluation is SICK:
Sentences Involving Compositional Knowledge
dataset, a task for SemEval 2014 (Marelli et al.,
2014a; Marelli et al., 2014b). The dataset is
10,000 pairs of sentences, 5000 training and 5000
for testing. Sentences are annotated for both tasks.

SICK-RTE SICK-STS
Baseline 70.0 71.1
MLN/PSL + Cosine 72.8 68.6
MLN/PSL + Asym 73.2 68.9
Ensemble 73.2 71.5

Table 1: Test RTE accuracy and STS Correlation.

4.1 Systems Compared

We compare multiple configurations of our proba-
bilistic logic system.

• Baseline: Vector- and keyword-only baseline
described in Section 3.6;
• MLN/PSL + Cosine: MLN and PSL based

methods described in Sections 3.4 and 3.5,
using cosine as a similarity measure;
• MLN/PSL + Asym: MLN and PSL based

methods described in Sections 3.4 and 3.5,
using asym as a similarity measure;
• Ensemble: An ensemble method which uses

all of the features in the above methods as in-
puts for the RTE and STS classifiers.

4.2 Results and Discussion

Table 1 shows our results on the held-out test set
for SemEval 2014 Task 1.

On the RTE task, we see that both the MLN +
Cosine and MLN + Asym models outperformed
the Baseline, indicating that textual entailment re-
quires real inference to handle negation and quan-
tifiers. The MLN + Asym and Ensemble sys-
tems perform identically on RTE, further suggest-
ing that the logical inference subsumes keyword
detection.

The MLN + Asym system outperforms the
MLN + Cosine system, emphasizing the impor-
tance of asymmetric measures for predicting lex-
ical entailment. Intuitively, this makes perfect
sense: dog entails animal, but not vice versa.

In an error analysis performed on a development
set, we found our RTE system was extremely con-
servative: we rarely confused the Entails and Con-
tradicts classes, indicating we correctly predict the
direction of entailment, but frequently misclassify
examples as Neutral. An examination of these ex-
amples showed the errors were mostly due to miss-
ing or weakly-weighted distributional rules.

On STS, our vector space baseline outperforms
both PSL-based systems, but the ensemble outper-
forms any of its components. This is a testament to
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the power of distributional models in their ability
to predict word and sentence similarity. Surpris-
ingly, we see that the PSL + Asym system slightly
outperforms the PSL + Cosine system. This may
indicate that even in STS, some notion of asymme-
try plays a role, or that annotators may have been
biased by simultaneously annotating both tasks.
As with RTE, the major bottleneck of our system
appears to be the knowledge base, which is built
solely using distributional inference rules.

Results also show that our system’s perfor-
mance is close to the baseline system. One of
the reasons behind that could be that sentences are
not exploiting the full power of logical represen-
tations. On RTE for example, most of the con-
tradicting pairs are two similar sentences with one
of them being negated. This way, the existence
of any negation cue in one of the two sentences is
a strong signal for contradiction, which what the
baseline system does without deeply representing
the semantics of the negation.

5 Conclusion & Future Work

We showed how to combine logical and distribu-
tional semantics using probabilistic logic, and how
to perform the RTE and STS tasks using it. The
system is tested on the SICK dataset.

The distributional side can be extended in many
directions. We would like to use longer phrases,
more sophisticated compositionality techniques,
and contextualized vectors of word meaning. We
also believe inference rules could be dramatically
improved by integrating from paraphrases collec-
tions like PPDB (Ganitkevitch et al., 2013).

Finally, MLN inference could be made more ef-
ficient by exploiting the similarities between the
two ground networks (the one with Q and the one
without). PLS inference could be enhanced by us-
ing a learned, weighted average of rules, rather
than the simple mean.

Acknowledgements

This research was supported by the DARPA DEFT
program under AFRL grant FA8750-13-2-0026.
Some experiments were run on the Mastodon
Cluster supported by NSF Grant EIA-0303609.
The authors acknowledge the Texas Advanced
Computing Center (TACC)1 for providing grid re-
sources that have contributed to these results. We
thank the anonymous reviewers and the UTexas

1http://www.tacc.utexas.edu

Natural Language and Learning group for their
helpful comments and suggestions.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings
of Semantic Evaluation (SemEval-12).

Marco Baroni and Alessandro Lenci. 2011. How
we BLESSed distributional semantic evaluation. In
Proceedings of the GEMS 2011 Workshop on GE-
ometrical Models of Natural Language Semantics,
pages 1–10, Edinburgh, UK, July. Association for
Computational Linguistics.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP-10).

Islam Beltagy and Raymond J. Mooney. 2014. Ef-
ficient Markov logic inference for natural language
semantics. In Proceedings of AAAI 2014 Workshop
on Statistical Relational AI (StarAI-14).

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Gar-
rette, Katrin Erk, and Raymond Mooney. 2013.
Montague meets Markov: Deep semantics with
probabilistic logical form. In Proceedings of the
Second Joint Conference on Lexical and Computa-
tional Semantics (*SEM-13).

Islam Beltagy, Katrin Erk, and Raymond Mooney.
2014a. Probabilistic soft logic for semantic textual
similarity. In Proceedings of Association for Com-
putational Linguistics (ACL-14).

Islam Beltagy, Katrin Erk, and Raymond Mooney.
2014b. Semantic parsing using distributional se-
mantics and probabilistic logic. In Proceedings
of ACL 2014 Workshop on Semantic Parsing (SP-
2014).

Johan Bos. 2008. Wide-coverage semantic analysis
with Boxer. In Proceedings of Semantics in Text
Processing (STEP-08).

J.H. Friedman. 1999. Stochastic gradient boosting.
Technical report, Stanford University.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT-13).

Vibhav Gogate and Rina Dechter. 2011. Sample-
search: Importance sampling in presence of deter-
minism. Artificial Intelligence, 175(2):694–729.

Vibhav Gogate and Pedro Domingos. 2011. Proba-
bilistic theorem proving. In 27th Conference on Un-
certainty in Artificial Intelligence (UAI-11).

800



Edward Grefenstette. 2013. Towards a formal distri-
butional semantics: Simulating logical calculi with
tensors. In Proceedings of Second Joint Conference
on Lexical and Computational Semantics (*SEM
2013).

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11(1):10–18.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Kluwer.

Angelika Kimmig, Stephen H. Bach, Matthias
Broecheler, Bert Huang, and Lise Getoor. 2012.
A short introduction to Probabilistic Soft Logic.
In Proceedings of NIPS Workshop on Probabilistic
Programming: Foundations and Applications (NIPS
Workshop-12).

Stanley Kok, Parag Singla, Matthew Richardson, and
Pedro Domingos. 2005. The Alchemy system
for statistical relational AI. Technical report, De-
partment of Computer Science and Engineering,
University of Washington. http://www.cs.
washington.edu/ai/alchemy.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering, 16(4):359–389.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
Proceedings of the first Joint Conference on Lexical
and Computational Semantics (*SEM-12).

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014a. SemEval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval-2014),
Dublin, Ireland.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014b. A sick cure for the evaluation
of compositional distributional semantic models.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), Reykjavik, Ice-
land, may. European Language Resources Associa-
tion (ELRA).

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings
of Association for Computational Linguistics (ACL-
08).

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34(3):1388–1429.

Richard Montague. 1970. Universal grammar. Theo-
ria, 36:373–398.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning,
62:107–136.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of the Twenty
Fifth International Conference on Computational
Linguistics (COLING-14), Dublin, Ireland.

Peter Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

801


