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Abstract

We use referential translation machines
(RTMs) for predicting the semantic simi-
larity of text. RTMs are a computational
model for identifying the translation acts
between any two data sets with respect
to interpretants selected in the same do-
main, which are effective when making
monolingual and bilingual similarity judg-
ments. RTMs judge the quality or the se-
mantic similarity of text by using retrieved
relevant training data as interpretants for
reaching shared semantics. We derive fea-
tures measuring the closeness of the test
sentences to the training data via inter-
pretants, the difficulty of translating them,
and the presence of the acts of transla-
tion, which may ubiquitously be observed
in communication. RTMs provide a lan-
guage independent approach to all simi-
larity tasks and achieve top performance
when predicting monolingual cross-level
semantic similarity (Task 3) and good re-
sults in semantic relatedness and entail-
ment (Task 1) and multilingual semantic
textual similarity (STS) (Task 10). RTMs
remove the need to access any task or do-
main specific information or resource.

1 Semantic Similarity Judgments

We introduce a fully automated judge for seman-
tic similarity that performs well in three seman-
tic similarity tasks at SemEval-2014, Semantic
Evaluation Exercises - International Workshop on
Semantic Evaluation (Nakov and Zesch, 2014).
RTMs provide a language independent solution for
the semantic textual similarity (STS) task (Task
10) (Agirre et al., 2014), achieve top perfor-
mance when predicting monolingual cross-level
semantic similarity (Task 3) (Jurgens et al., 2014),
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and achieve good results in the semantic related-
ness and entailment task (Task 1) (Marelli et al.,
2014a).

Referential translation machine (Section 2) is
a computational model for identifying the acts of
translation for translating between any given two
data sets with respect to a reference corpus se-
lected in the same domain. An RTM model is
based on the selection of interpretants, training
data close to both the training set and the test set,
which allow shared semantics by providing con-
text for similarity judgments. In semiotics, an in-
terpretant [ interprets the signs used to refer to the
real objects (Bigici, 2008). Each RTM model is
a data translation and translation prediction model
between the instances in the training set and the
test set and translation acts are indicators of the
data transformation and translation. RTMs present
an accurate and language independent solution for
making semantic similarity judgments.

We describe the tasks we participated below.
Section 2 describes the RTM model and the fea-
tures used. Section 3 presents the training and test
results we obtain on the three tasks we competed
and the last section concludes.

Task 1 Evaluation of Compositional Distribu-
tional Semantic Models on Full Sentences
through Semantic Relatedness and Entail-
ment (SRE) (Marelli et al., 2014a):

Given two sentences, produce a related-
ness score indicating the extent to which
the sentences express a related meaning: a
number in the range [1, 5].

We model the problem as a translation perfor-
mance prediction task where one possible inter-
pretation is obtained by translating 57 (the source
to translate, S) to Sy (the target translation, T).
Since linguistic processing can reveal deeper sim-
ilarity relationships, we also look at the translation
task at different granularities of information: plain
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text (R for regular) and after lemmatization (L).
We lowercase all text.

Task 3 Cross-Level Semantic
(CLSS) (Jurgens et al., 2014):

Similarity

Given two text from different levels, pro-
duce a semantic similarity rating: a num-
ber in the range |0, 4].

CLSS task targets semantic similarity compar-
isons between text having different levels of gran-
ularity and we address the following level cross-
ings: paragraph to sentence, sentence to phrase,
and phrase to word. We model the problem as
a translation performance prediction task among
text from different levels.

Task 10 Multilingual Semantic Textual Similarity
(MSTS) (Agirre et al., 2014)

Given two sentences S1 and So in the same
language, quantify the degree of similar-
ity: a number in the range [0, 5).

MSTS task addresses the problem in English
and Spanish (score range is [0, 4]). We model the
problem as a translation performance prediction
task between Sp and Ss.

2 Referential Translation Machine
(RTM)

Referential translation machines provide a compu-
tational model for quality and semantic similarity
judgments in monolingual and bilingual settings
using retrieval of relevant training data (Bigici,
2011; Bigici and Yuret, 2014) as interpretants for
reaching shared semantics (Bicici, 2008). RTMs
are a language independent approach and achieve
top performance when predicting the quality of
translations (Bigici, 2013; Bicici and Way, 2014)
and when predicting monolingual cross-level se-
mantic similarity (Jurgens et al., 2014), and good
performance when evaluating the semantic relat-
edness of sentences and their entailment (Marelli
et al., 2014a), as an automated student answer
grader (Bicici and van Genabith, 2013b), and
when judging the semantic similarity of sen-
tences (Bigici and van Genabith, 2013a; Agirre et
al., 2014). We improve the RTM models by:

e using a parameterized, fast implementation
of FDA, FDAS, and our Parallel FDAS5 in-
stance selection model (Bigici et al., 2014),

e better modeling of the language in which

488

Algorithm 1: Referential Translation Machine

Input: Training set t rain, test set test,
corpus C, and learning model M.

Data: Features of train and test, Firain
and Fiest-

QOutput: Predictions of similarity scores on

the test q.

FDA5(train,test,C) =T

MTPP(Z,train) — Firain

MTPP(Z, test) — Fiest

learn(M, Fivain) — M

predict(M, Fiest) — G

[V I N I S

similarity judgments are made with improved
optimization and selection of the LM data,

e using a general domain corpus to select inter-
pretants from,

e increased feature set for also modeling the
structural properties of sentences,

e extended learning models.

We use the Parallel FDAS (Feature Decay Algo-
rithms) instance selection model for selecting the
interpretants (Bigici et al., 2014; Bigici and Yuret,
2014) this year, which allows efficient parameteri-
zation, optimization, and implementation of FDA,
and build an MTPP model (Section 2.1). We view
that acts of translation are ubiquitously used dur-
ing communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different lan-
guages and paraphrasing or communication also
contain acts of translation. When creating sen-
tences, we use our background knowledge and
translate information content according to the cur-
rent context.

The inputs to the RTM algorithm Algorithm 1
are a training set train, a test set test, some
corpus C, preferably in the same domain as the
training and test sets, and a learning model. Step 1
selects the interpretants, Z, relevant to both the
training and test data. Steps 2 and 3 use Z to map
train and test to a new space where similari-
ties between translation acts can be derived more
easily. Step 4 trains a learning model M over the
training features, Fi,.,in, and Step 5 obtains the
predictions. Figure 1 depicts the RTM.
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Figure 1: RTM depiction.

Our encouraging results in the semantic simi-
larity tasks increase our understanding of the acts
of translation we ubiquitously use when commu-
nicating and how they can be used to predict the
semantic similarity of text. RTM and MTPP mod-
els are not data or language specific and their mod-
eling power and good performance are applicable
in different domains and tasks. RTM expands the
applicability of MTPP by making it feasible when
making monolingual quality and similarity judg-
ments and it enhances the computational scalabil-
ity by building models over smaller and more rel-
evant set of interpretants.

2.1 The Machine Translation Performance
Predictor (MTPP)

MTPP (Bigici et al., 2013) is a state-of-the-art
and top performing machine translation perfor-
mance predictor, which uses machine learning
models over features measuring how well the test
set matches the training set to predict the quality
of a translation without using a reference trans-
lation. MTPP measures the coverage of individ-
ual test sentence features found in the training set
and derives indicators of the closeness of test sen-
tences to the available training data, the difficulty
of translating the sentence, and the presence of
acts of translation for data transformation.

2.2 MTPP Features for Translation Acts

MTPP feature functions use statistics involving
the training set and the test sentences to deter-
mine their closeness. Since they are language
independent, MTPP allows quality estimation to
be performed extrinsically. MTPP uses n-gram
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features defined over text or common cover link
(CCL) (Seginer, 2007) structures as the basic units
of information over which similarity calculations
are made. Unsupervised parsing with CCL ex-
tracts links from base words to head words, rep-
resenting the grammatical information instantiated
in the training and test data.

We extend the MTPP model we used last
year (Bigici, 2013) in its learning module and the
features included. Categories for the features (S
for source, T for target) used are listed below
where the number of features are given in brackets
for S and T, {#S, #T}, and the detailed descriptions
for some of the features are presented in (Bigici et
al., 2013). The number of features for each task
differs since we perform an initial feature selection
step on the tree structural features (Section 2.3).
The number of features are in the range 337 —437.

e Coverage {56, 54}: Measures the degree to
which the test features are found in the train-

ing set for both S ({56}) and T ({54}).
o Perplexity {45, 45}: Measures the fluency of

the sentences according to language models
(LM). We use both forward ({30}) and back-

ward ({15}) LM features for S and T.
o TreeF {0, 10-110}: 10 base features and up

to 100 selected features of T among parse tree

structures (Section 2.3).
e Retrieval Closeness {16, 12}: Measures the

degree to which sentences close to the test set
are found in the selected training set, Z, using
FDA (Bigici and Yuret, 2011a) and BLEU,
F1 (Bigici, 2011), dice, and tf-idf cosine sim-
ilarity metrics.

e IBM?2 Alignment Features {0, 22}: Calcu-
lates the sum of the entropy of the dis-
tribution of alignment probabilities for S
(> _seg —plogp for p = p(t|s) where s and
t are tokens) and T, their average for S and
T, the number of entries with p > 0.2 and
p > 0.01, the entropy of the word align-
ment between S and T and its average, and
word alignment log probability and its value
in terms of bits per word. We also com-
pute word alignment percentage as in (Ca-
margo de Souza et al., 2013) and potential
BLEU, F;, WER, PER scores for S and T.

e IBMI Translation Probability {4, 12}: Cal-
culates the translation probability of test
sentences using the selected training set,

7 (Brown et al., 1993).
e Feature Vector Similarity {8, 8}: Calculates

similarities between vector representations.
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numB depthB avg depthB R/L avg R/L
24.0 9.0 0.375 2.1429 3.401

2 1 1 1 1
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1 1 1 13 1 2 1 8 2 10

1 1 1 1

N N N I\

3 1 3 4 5 1 7 15

Table 1: Tree features for a parsing output by CCL (immediate non-terminals replaced with NP).

e Entropy {2, 8}: Calculates the distributional
similarity of test sentences to the training set
over top N retrieved sentences (Bigici et al.,
2013).

o Length {6, 3}: Calculates the number of
words and characters for S and T and their
average token lengths and their ratios.

e Diversity {3, 3}: Measures the diver-
sity of co-occurring features in the training
set (Bigici et al., 2013).

e Synthetic Translation Performance {3, 3}:
Calculates translation scores achievable ac-
cording to the n-gram coverage.

e Character n-grams {5}: Calculates cosine
between character n-grams (for n=2,3,4,5,6)
obtained for S and T (Bir et al., 2012).

e Minimum Bayes Retrieval Risk {0, 4}: Cal-
culates the translation probability for the
translation having the minimum Bayes risk
among the retrieved training instances.

e Sentence Translation Performance {0, 3}:
Calculates translation scores obtained ac-
cording to ¢(7', R) using BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), or
F1 (Bigici and Yuret, 2011b) for q.

e LIX {1, 1}: Calculates the LIX readability
score (Wikipedia, 2013; Bjornsson, 1968) for
SandT. !

2.3 Bracketing Tree Structural Features

We use the parse tree outputs obtained by CCL
to derive features based on the bracketing struc-
ture. We derive 5 statistics based on the geometric
properties of the parse trees: number of brackets
used (numB), depth (depthB), average depth (avg

1LIX:% +C %, where A is the number of words, C is

words longer than 6 characters, B is words that start or end
with any of “.”, “:”, “I”, “?” similar to (Hagstrom, 2012).
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depthB), number of brackets on the right branches
over the number of brackets on the left (R/L) 2, av-
erage right to left branching over all internal tree
nodes (avg R/L). The ratio of the number of right
to left branches shows the degree to which the sen-
tence is right branching or not. Additionally, we
capture the different types of branching present
in a given parse tree identified by the number of
nodes in each of its children.

Table 1 depicts the parsing output obtained by
CCL for the following sentence from WSJ23 3:

Many fund managers argue that now ’s the time
to buy .

We use Tregex (Levy and Andrew, 2006) for vi-
sualizing the output parse trees presented on the
left. The bracketing structure statistics and fea-
tures are given on the right hand side. The root
node of each tree structural feature represents the
number of times that feature is present in the pars-
ing output of a document.

3 SemkEval-14 Results

We develop individual RTM models for each task
and subtask that we participate at SemEval-2014
with the RTM-DCU team name. The interpre-
tants are selected from the LM corpora distributed
by the translation task of WMT14 (Bojar et al.,
2014) and the LM corpora provided by LDC for
English (Parker et al., 2011) and Spanish (Angelo
Mendonga, 2011) *. We use the Stanford POS tag-
ger (Toutanova et al., 2003) to obtain the lemma-
tized corpora for the SRE task. For each RTM

ZFor nodes with uneven number of children, the nodes in
the odd child contribute to the right branches.

3Wall Street Journal (WSJ) corpus section 23, distributed
with Penn Treebank version 3 (Marcus et al., 1993).

*English Gigaword 5th, Spanish Gigaword 3rd edition.



model, we extract the features both on the train-
ing set and the test set. The number of instances
we select for the interpretants in each task is given
in Table 2.

Task Setting Train LM

Task 1, SRE English 770 10770
Task 3, CLSS Par2S 302 2802
Task 3, CLSS S2Phrase 202 2702
Task 3, CLSS Phrase2W 102 2602
Task 10, MSTS  English 504 8002
Task 10, MSTS  English OnWN | 504 8004
Task 10, MSTS  Spanish 502 8002

Table 2: Number of sentences in Z (in thousands)
selected for each task.

We use ridge regression (RR), support vector
regression (SVR) with RBF (radial basis func-
tions) kernel (Smola and Scholkopf, 2004), and
extremely randomized trees (TREE) (Geurts et al.,
2006) as the learning models. TREE is an en-
semble learning method over randomized decision
trees. These models learn a regression function
using the features to estimate a numerical target
value. We also use these learning models after
a feature subset selection with recursive feature
elimination (RFE) (Guyon et al., 2002) or a di-
mensionality reduction and mapping step using
partial least squares (PLS) (Specia et al., 2009),
both of which are described in (Bicici et al., 2013).
We optimize the learning parameters, the num-
ber of features to select, the number of dimen-
sions used for PLS, and the parameters for paral-
lel FDAS. More detailed descriptions of the opti-
mization processes are given in (Bigici et al., 2013;
Bicici et al., 2014). We optimize the learning pa-
rameters by selecting ¢ close to the standard devi-
ation of the noise in the training set (Bigici, 2013)
since the optimal value for € is shown to have
linear dependence to the noise level for different
noise models (Smola et al., 1998). At testing time,
the predictions are bounded to obtain scores in the
corresponding ranges. We obtain the confidence
scores using support vector classification (SVC).

3.1 Task 1: Semantic Relatedness and
Entailment

MSTS contains sentence pairs from the SICK
(Sentences Involving Compositional Knowledge)
data set (Marelli et al., 2014b), which contain sen-
tence pairs that contain rich lexical, syntactic and
semantic phenomena. Official evaluation metric
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in SRE is the Pearson’s correlation score, which
is used to select the top systems on the training
set. SRE task allows the submission of 5 entries.
We present the performance of the top 5 individ-
ual RTM models on the training set in Table 3.
ACC is entailment accuracy, rp is Pearson’s corre-
lation, rg is Spearman’s correlation, MSE is mean
squared error, MAE is mean absolute error, and
RAE is relative absolute error. L uses the lem-
matized corpora and R uses the true-cased corpora
corresponding to regular. R+L correspond to the
perspective using the features from both R and L,
which doubles the number of features. We com-
pute the entailment by SVC.

Data Model ACC rp rs MSE MAE RAE
L SVR 67.52 7372 .6918 .6946 .5511 .6856
L  PLS-SVR| 67.04 .7539 .6927 .6763 .5369 .668
R+L PLS-SVR| 66.76 .75  .6879 .6815 .539 .6705
R+L SVR 66.66 .7295 .6814 .7027 .5591 .6956
L  PLS-RR | 66.56 .7247 .6765 .7054 .5687 .7075

Table 3: SRE training results of the top 5 RTM
systems selected.

SRE challenge results on the test set are given
in Table 4. The setting R using PLS-SVR learning
becomes the 8th out of 17 submissions when pre-
dicting the semantic relatedness and 17th out of 18
submissions when predicting the entailment.

Data Model ACC rp rs RMSE MAE RAE
R PLS-SVR| 67.20 .7639 .6877 .655  .5246 .6645
R+L PLS-SVR | 67.65 .7688 .6918 .6492 .5194 .658
L SVR 67.65 7559 .6887 .664 531 .6726
R+L SVR 67.44 7625 .6899 .6555 .5251 .6651
R  PLS-SVR| 66.61 .7570 .6683 .6637 .5324 .6744

Table 4: RTM-DCU test results on the SRE task.

Model TP RMSE MAE RAE
Par2S TREE 0.8013 0.8345 0.6277 0.5083
Par2S PLS-TREE| 0.7737 0.8824 0.673 0.5449
Par2S SVR 0.7718 0.8863 0.6791 0.5499

S2Phrase TREE
S2Phrase PLS-TREE
S2Phrase SVR

0.6756 0.9887 0.7746 0.6665
0.6119 1.0616 0.8582 0.7384
0.6059 1.0662 0.8668 0.7458

Phrase2W TREE 0.201  1.3275 1.1353 0.9706
Phrase2W RR 0.1255 1.3463 1.1594 0.9912
Phrase2W SVR 0.0847 1.3548 1.1663 0.9972

Table 5: CLSS training results of the top 3 RTM
systems for each subtask. Levels correspond to
paragraph to sentence (Par2S), sentence to phrase
(S2Phrase), and phrase to word (Phrase2W).



3.2 Task 3: Cross-Level Semantic Similarity

CLSS contains sentence pairs from different gen-
res including text from newswire, travel, reviews,
metaphoric text, community question answering
sites, idiomatic text, descriptions, lexicographic
text, and search. Official evaluation metric in
CLSS is the sum of the Pearson’s correlation
scores for different levels °. CLSS task allows the
submission of 3 entries per subtask. We present
the performance of the top 3 individual RTM mod-
els on the training set in Table 5. RMSE is the root
mean squared error. As the compared text size de-
crease, the performance decrease since it can be-
come harder and more ambiguous to find the simi-
larity using less context. RTM-DCU results on the
CLSS challenge test set are provided in Table 6.

Model rp  RMSE MAE RAE
Par2S TREE 8445 7417 5622 4579
Par2S PLS-TREE | .7847 853  .6456 .5258
Par2S SVR 7858 .8428 .6539 5325
S2Phrase TREE 75 8827 7053 .6255
S2Phrase PLS-TREE| .6979 .9491 7781 .69
S2Phrase SVR .6631 9835 7992 7088
Phrase2W TREE 3053 1.3351 1.14 9488
Phrase2W RR 2207 1.3644 1.1574 9633
Phrase2W SVR 1712 1.3792 1.1792 9815

Table 6: RTM-DCU test results on CLSS for the
top 3 RTM systems for each subtask.

Table 7 lists the results along with their ranks
for rp and rg, Spearman’s correlation, out of
CHECK submissions. The baseline in Table 7
is normalized longest common substring (LCS)
scaled in the range [0, 4]. Top individual rank row
lists the ranks in each subtask. We present the re-
sults for both our official and late (about 1 day)
submissions including word to sense (W2S) re-
sults . RTM-DCU is able to obtain the top result
in Par2S in the CLSS task.

3.3 Task 10: Multilingual Semantic Textual
Similarity

MSTS contains sentence pairs from different do-
mains: sense definitions from semantic lexical re-
sources such as OnWN (from OntoNotes (Prad-
han et al., 2007) and WordNet (Miller, 1995)) and
FNWN (from FrameNet (Baker et al., 1998) and
WordNet), news headlines, image descriptions,
news title tweet comments, deft forum and news,

3Giving advantage to participants submitting to all levels.
®W2S results for the late submission is obtained from the
LCS baseline to calculate the ranks.

492

rp Par2S S2Phrase Phrase2W W2S | Rank
LCS 0.527 0.562 0.165 0.109| 25
0.780 0.677 0.208 14
Official 0.747 0.588 0.164 19
0.786 0.666 0.171 18
0.845 0.750 0.305 0.109 6
Late 0.785 0.698 0.221 0.109| 13
0.786 0.663 0.171 0.109| 17
Top Rank 1 5 3
rs Par2S S2Phrase Phrase2W W2S | Rank
LCS 0.527 0.562 0.165 0.13 23
0.780 0.677 0.208 17
Official 0.747 0.588 0.164 22
0.786 0.666 0.171 18
0.829 0.734 0.295 0.13 8
Late 0.778 0.687 0.219 0.13 15
0.778 0.667 0.166  0.13 16
Top Rank 1 5 5

Table 7: RTM-DCU test results on CLSS.

paraphrases. Official evaluation metric in MSTS
is the Pearson’s correlation score.

MSTS task provides 7622 training instances
and 3750 test instances. For the OnWN domain,
1316 training instances are available and therefore,
we build a separate RTM model for this domain.
Separate modeling of the OnWN dataset results
with higher confidence scores on the test instances
than we would obtain using the overall model to
predict. MSTS task allows the submission of 3 en-
tries per subtask. We present the performance of
the top 3 individual RTM models on the training
set in Table 8.

Lang Model rp  RMSE MAE RAE
TREE 0.6931 1.0627 0.8058 0.6649

= PLS-TREE | 0.6875 1.0753 0.8038 0.6632
%o PLS-SVR 0.6884 1.0698 0.8157 0.6730
5 Z TREE 0.8094 0.9295 0.694 0.5245
% PLS-TREE | 0.7953 0.9604 0.7203 0.5444

O PLS-SVR 0.7888 0.9779 0.7234 0.5468

Z TREE 0.6513 0.7341 0.5904 0.7508
g PLS-TREE | 0.4157 0.9007 0.7108 0.9039
& PLS-SVR 0.4239 1.1427 0.8293 1.0545

Table 8: MSTS training results on the English, En-
glish OnWN, and Spanish tasks.

RTM results on the MSTS challenge test set are
provided in Table 9 along with the RTM results in
STS 2013 (Bicici and van Genabith, 2013a). Ta-
ble 10 and Table 11 lists the official results on En-
glish and Spanish tasks with rankings calculated
according to weighted rp, which weights accord-
ing to the number of instances in each domain.
RTM-DCU is able to become 10th in the OnWN
domain and 19th overall out of 38 submissions in
MSTS English and 18th out of 22 submissions in



Model [ rp RMSE MAE RAE Model Wikipedia  News Weighted r»  Rank
TREE 4341 1.4306 1.1609 1.0908 TREE 0.4216  0.7000 0.5878 18
deft-forum PLS-TREE 3965 1.4115 1.1472 1.078  PLS-TREE | 0.3689  0.6253 0.5219 20
PLS-SVR 3078 1.6277 1.3482 1.2669 PLS-SVR 04242  0.6411 0.5537 19
TREE 6974 1.1469 9032 .8716
deft-news PLS-TREE 6811 1.1229 .8769 .8462 .
PLS-SVR 5562 12803 9835 9491 Table 11: RTM—DCU test results on MSTS Span-
TREE 6199 1.1495 9254 7845  ish task. Rankings are calculated according to the
ﬁ headlines PLS-TREE 6125 11552 9314 7896 Welghted Pearson’s Correlation‘
= PLS-SVR 6301 1.1041 .8807 .7467
[5 TREE .6995 1.2034 .9499 .7395
images PLS-TREE 6656 1.2298 9692 .7545
PLS-SVR 6474 1.4406 1.1057 .8607 tion edit rate (HTER), or post-editing time (PET)
TREE .8058 1.3122 1.0028 .5585 . .
OnWN PLS-TREE 7992 1.2997 9815 .5467 of translations are predICted' .
PLS-SVR .8004 1.2913 .9449 5263 The best results are obtained for the CLSS
TREE 68829869 831 8093 pypog subtask, which may be due to the larger
tweet-news PLS-TREE 6691 1.0101 .8433 .8213 . .
PLS-SVR 5531 1.0633 8653 8427 contextual information that paragraphs can pro-
TREE 7 15185 1351 14141 vide for the RTM models. For the SRE task, we
< News PLS-TREE 6253 1.6523 1.4464 1514  can only reduce the error with respect to knowing
8= PLS-SVR 6411 1.554 1.3196 1.3813 d dicti th by about 35%. Predicti
S TREE 4216 15433 1298 13579 Aandpredicting the mean by about 5o 70. Fredicion
“ Wikipedia PLS-TREE 3689 1.6655 1.4015 1.4662 of bilingual similarity as in quality estimation of
PLS-SVR 4242 1.5998 1.3141 13748  translation can be expected to be harder and RTMs
L+S SVR 6552 1.5649 12763 1.0231 . e .
headlines L+P+S SVR 651 14845 11984 9607 achleve'st.at.e of-the-art performance in this task as
- L+P+S SVR TL| .6385 1.4878 1.2008 .9626  Well (Bigici and Way, 2014).
& L+S SVR 6943 1.7065 1.3545 .8255
2 OnWN L+P+S SVR 6971 1.6737 1.333 .8124 .
o~ L+P+S SVR TL| .6755 1.7124 1.3598 .8287 4 Conclusion
= L+S SVR 3005 .8833 .6886 1.6132
g SMT L+P+S SVR 2861 .8810 .6821 1.598 f ial lati hi . 1
; L+P+S SVR TL| .3098 .8635 .6547 1.5339 Referential translation machines prOVlde a clean
L+SSVR 2016 1.2957 1.0604 1.2633 and intuitive computational model for automati-
FNWN L+P+S SVR 118 1.4369 1.1866 1.4136 : . EES A _
LiP+S SVR TLI 1823 13245 10962 1.305 cally measuring semantic similarity by measur:

Table 9: RTM-DCU test results on MSTS for the
top 3 RTM systems for each subtask as well as
RTM results in STS 2013 (Bigici and van Gen-
abith, 2013a).

MSTS Spanish. The performance difference be-
tween MSTS English and MSTS Spanish may be
due to the fewer training data available for the
MSTS Spanish task, which may be decreasing the
performance of our supervised learning approach.

3.4 RTMs Across Tasks and Years

We compare the difficulty of tasks according to the
RAE levels achieved. RAE measures the error rel-
ative to the error when predicting the actual mean.
A high RAE is an indicator that the task is hard.
In Table 12, we list the RAE obtained for differ-
ent tasks and subtasks, also listing RTM results in
STS 2013 (Bicici and van Genabith, 2013a) and
RTM results (Bicici and Way, 2014) on the quality
estimation task (QET) (Bojar et al., 2014) where
post-editing effort (PEE), human-targeted transla-
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ing the acts of translation involved and achieve to
be the top on some semantic similarity tasks at
SemEval-2014. RTMs make quality and seman-
tic similarity judgments possible based on the re-
trieval of relevant training data as interpretants for
reaching shared semantics.

Acknowledgments

This work 1is supported in part by SFI
(07/CE/N1142) as part of the CNGL Centre
for Global Intelligent Content (www . cngl.org)
at Dublin City University, in part by SFI
(13/TIDA/12740) for the project “Monolin-
gual and Bilingual Text Quality Judgments
with  Translation Performance Prediction”
(www.computing.dcu.ie/ ebicici/
Projects/TIDARTM.html), and in part
by the European Commission through the QT-
LaunchPad FP7 project (No: 296347). We
also thank the SFI/HEA Irish Centre for High-
End Computing (ICHEC) for the provision of
computational facilities and support.



Model deft-forum  deft-news headlines images OnWN tweet-news Weighted rp  Rank
TREE 4341 .6974 .6199 .6995 .8058 .6882 .6706 20
PLS-TREE .3965 .6811 .6125 .6656 7992 6691 .6513 23
PLS-SVR 3078 .5562 .6301 .6475 .8004 5531 .6076 27
Top Rank 17 16 25 16 13
< TREE 4181 .6846 .6216 .6981 .8331 .6870 .6729 19
S PLS-TREE 3831 6739 .6094 .6629 .8260 6691 .6534 23
5 PLS-SVR 2731 .5526 .6330 6441 .8246 .5683 .6110 26
= Top Rank 18 18 23 10 14

Table 10: RTM-DCU test results with ranks on MSTS English task.

Task Subtask Domain Model | RAE
R PLS-SVR .6645

R+L PLS-SVR .6580

SRE English SICK L SVR .6726
R+L SVR .6651

R PLS-SVR .6744

Par2S TREE 4579

CLSS S2Phrase Mixed TREE .6255
Phrase2W TREE .9488

deft-forum  PLS-TREE 1.078

deft-news PLS-TREE .8462

English headlines PLS-SVR 7467

MSTS images TREE 7395
OnWN PLS-SVR .5263

tweet-news TREE .8093
Spanish Ngv&{s ‘ PLS-SVR 1.3813
Wikipedia TREE 1.3579

headlines L+P+S SVR 9607

. OnWN L+P+S SVR .8124
STS 2013 English SMT L+P+S SVRTL | 1.5339
FNWN L+S SVR 1.2633

Spanish-English ~ Europarl FS-RR .9000
Spanish-English ~ Europarl PLS-RR .9409
English-German  Europarl PLS-TREE .8883
English-German  Europarl TREE .8602
QET PEE English-Spanish  Europarl TREE 1.0983
English-Spanish ~ Europarl PLS-TREE 1.0794
German-English  Europarl RR .8204
German-English ~ Euruparl PLS-RR .8437
English-Spanish ~ Europarl SVR .8532

QET HTER English-Spanish ~ Europarl TREE .8931
English-Spanish ~ Europarl SVR 7223

QET PET English-Spanish ~ Europarl RR 7536
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