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Abstract 

SemEval-2014 Task 6 aims to advance 

semantic parsing research by providing a 

high-quality annotated dataset to com-

pare and evaluate approaches. The task 

focuses on contextual parsing of robotic 

commands, in which the additional con-

text of spatial scenes can be used to guide 

a parser to control a robot arm. Six teams 

submitted systems using both rule-based 

and statistical methods. The best per-

forming (hybrid) system scored 92.5% 

and 90.5% for parsing with and without 

spatial context. However, the best per-

forming statistical system scored 87.35% 

and 60.84% respectively, indicating that 

generalized understanding of commands 

given to a robot remains challenging, de-

spite the fixed domain used for the task. 

1 Introduction 

Semantic parsers analyze sentences to produce 

formal meaning representations that are used for 

the computational understanding of natural lan-

guage. Recently, state-of-the-art semantic pars-

ing methods have used for a variety of applica-

tions, including question answering (Kwiat-

kowski et al., 2013; Krishnamurthy and Mitchell, 

2012), dialog systems (Artzi and Zettlemoyer, 

2011), entity relation extraction (Kate and 

Mooney, 2010) and robotic control (Tellex, 

2011; Kim and Mooney, 2012). 

Different parsers can be distinguished by the 

level of supervision they require during training. 

Fully supervised training typically requires an 

annotated dataset that maps natural language 

(NL) to a formal meaning representation such as 

logical form. However, because annotated data is  

 

often not available, a recent trend in semantic 

parsing research has been to eschew supervised 

training in favour of either unsupervised or 

weakly-supervised methods that utilize addi-

tional information. For example, Berant and Li-

ang (2014) use a dataset of 5,810 question-

answer pairs without annotated logical forms to 

induce a parser for a question-answering system. 

In comparison, Poon (2013) converts NL ques-

tions into formal queries via indirect supervision 

through database interaction. 

In contrast to previous work, the shared task 

described in this paper uses the Robot Com-

mands Treebank (Dukes, 2013a), a new dataset 

made available for supervised semantic parsing. 

The chosen domain is robotic control, in which 

NL commands are given to a robot arm used to 

manipulate shapes on an 8 x 8 game board. De-

spite the fixed domain, the task is challenging as 

correctly parsing commands requires understand-

ing spatial context. For example, the command in 

Figure 1 may have several plausible interpreta-

tions, given different board configurations. 

 

 

‘Move the pyramid on the blue cube on the gray one.’ 

 

Figure 1: Example scene with a contextual spatial 

command from the Robot Commands Treebank. 

This work is licensed under a Creative Commons Attribution 

4.0 International License. License details: 
http://creativecommons.org/licenses/by/4.0 
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The task is inspired by the classic AI system 

SHRLDU, which responded to NL commands to 

control a robot for a similar game board (Wino-

grad, 1972), although that system is reported to 

not have generalized well (Dreyfus, 2009; Mit-

kov, 1999). More recent research in command 

understanding has focused on parsing jointly 

with grounding, the process of mapping NL de-

scriptions of entities within an environment to a 

semantic representation. Previous work includes 

Tellex et al. (2011), who develop a small corpus 

of commands for a simulated fork lift robot, with 

grounding performed using a factor graph. Simi-

larly, Kim and Mooney (2012) perform joint 

parsing and grounding using a corpus of naviga-

tion commands. In contrast, this paper focuses on 

parsing using additional situational context for 

disambiguation and by using a larger NL dataset, 

in comparison to previous robotics research. 

In the remainder of this paper, we describe the 

task, the dataset and the metrics used for evalua-

tion. We then compare the approaches used by 

participant systems and conclude with suggested 

improvements for future work. 

2 Task Description 

The long term research goal encouraged by the 

task is to develop a system that will robustly 

execute NL robotic commands. In general, this is 

a highly complex problem involving computa-

tional processing of language, spatial reasoning, 

contextual awareness and knowledge representa-

tion. To simplify the problem, participants were 

provided with additional tools and resources, 

allowing them to focus on developing a semantic 

parser for a fixed domain that would fit into an 

existing component architecture. Figure 2 shows 

how these components interact. 

 

Semantic parser: Systems submitted by partici-

pants are semantic parsers that accept an NL 

command as input, mapping this to a formal Ro-

bot Control Language (RCL), described further 

in section 3.3. The Robot Commands Treebank 

used for the both training and evaluation is an 

annotated corpus that pairs NL commands with 

contextual RCL statements. 

 

Spatial planner: A spatial planner is provided 

as an open Java API
1
. Commands in the treebank 

are specified in the context of spatial scenes. By 

interfacing with the planner,  participant systems 

                                                 
1
 https://github.com/kaisdukes/train-robots  

 
 
Figure 2: Integrated command understanding system. 

 

have access to this additional information. For 

example, given an RCL fragment for the expres-

sion ‘the red cube on the blue block’, the planner 

will ground the entity, returning a list of zero or 

more board coordinates corresponding to possi-

ble matches. The planner also validates com-

mands to determine if they are compatible with 

spatial context. It can therefore be used to con-

strain the search space of possible parses, as well 

as enabling early resolution of attachment ambi-

guity during parsing. 

 

Robotic simulator: The simulated environment 

consists of an 8 x 8 board that can hold prisms 

and cubes which occur in eight different colors. 

The robot’s gripper can move to any discrete po-

sition within an 8 x 8 x 8 space above the board. 

The planner uses the simulator to enforce physi-

cal laws within the game. For example, a block 

cannot remain unsupported in empty space due 

to gravity. Similarly, prisms cannot lie below 

other block types. In the integrated system, the 

parser uses the planner for context, then provides 

the final RCL statement to the simulator which 

executes the command by moving the robot arm 

to update the board. 

3 Data 

3.1 Data Collection 

For the shared task, 3,409 sentences were se-

lected from the treebank. This data size compares 

with related corpora used for semantic parsing 

such as the ATIS (Zettlemoyer and Collins, 

2007), GeoQuery (Kate et al., 2005), Jobs (Tang 

and Mooney, 2001) and RoboCup (Kuhlmann et 

al., 2004) datasets, consisting of 4,978; 880; 640 

and 300 sentences respectively.  

The treebank was developed via a game with a 

purpose (www.TrainRobots.com), in which play-

ers were shown  before  and after  configurations 

Semantic parser 

Spatial planner 

Robotic simulator 

NL command 
parsing 

RCL 

spatial context 
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Figure 3: Semantic tree from the treebank with an elliptical anaphoric node and its annotated antecedent. 

 

and asked to give a corresponding command to a 

hypothetical robot arm. To make the game more 

competitive and to promote data quality, players 

rated each other’s sentences and were rewarded 

with points for accurate entries (Dukes, 2013b). 

3.2 Annotation 

In total, over 10,000 commands were collected 

through the game. During an offline annotation 

phase, sentences were manually mapped to RCL. 

However, due to the nature of the game, players 

were free to enter arbitrarily complex sentences 

to describe moves, not all of which could be rep-

resented by RCL. In addition, some commands 

were syntactically well-formed, but not compati-

ble with the corresponding scenes. The 3,409 

commands selected for the task had RCL state-

ments that  were both understood by the  planner 

(sequence: 

  (event: 

    (action: take) 

    (entity: 

      (id: 1) 

      (color: cyan) 

      (type: prism) 

      (spatial-relation: 

        (relation: above) 

        (entity: 

          (color: white) 

          (type: cube))))) 

  (event: 

    (action: drop) 

    (entity: 

      (type: reference) 

      (reference-id: 1)) 

    (destination: 

      (spatial-relation: 

        (relation: above) 

        (entity: 

          (color: blue) 

          (color: green) 

          (type: stack)))))) 

Figure 4: RCL representation with co-referencing. 

and when given to the robotic simulator resulted 

in the expected move being made between before 

and after board configurations. Due to this extra 

validation step, all RCL statements provided for 

the task were contextually well-formed. 

3.3 Robot Control Language 

RCL is a novel linguistically-oriented semantic 

representation. An RCL statement is a semantic 

tree (Figure 3) where leaf nodes generally align 

to words in the corresponding sentence, and non-

leaves are tagged using a pre-defined set of cate-

gories. RCL is designed to annotate rich linguis-

tic structure, including ellipsis (such as ‘place [it] 

on’), anaphoric references (‘it’ and ‘one’), multi-

word spatial expressions (‘on top of’) and lexical 

disambiguation (‘one’ and ‘place’). Due to ellip-

sis, unaligned words and multi-word expressions, 

a leaf node may align to zero, one or more words 

in a sentence. Figure 4 shows the RCL syntax for 

the tree in Figure 3, as accepted by the spatial 

planner and the simulator. As these components 

do not require NL word alignment data, this ad-

ditional information was made available to task 

participants for training via a separate Java API. 

The tagset used to annotate RCL nodes can be 

divided into general tags (that are arguably ap-

plicable to other domains) and specific tags that 

were customized for the domain in the task (Ta-

bles 1 and 2 overleaf, respectively). The general 

elements are typed entities (labelled with seman-

tic features) that are connected using relations 

and events. This universal formalism is not do-

main-specific, and is inspired by semantic frames 

(Fillmore and Baker, 2001), a practical represen-

tation used for NL understanding systems (Dzik-

ovska, 2004; UzZaman and Allen, 2010; Coyne 

et al., 2010; Dukes, 2009). 

In the remainder of this section we summarize 

aspects of RCL that are relevant to the task; a 
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more detailed description is provided by Dukes 

(2013a; 2014). In an RCL statement such as Fig-

ure 4, a preterminal node together with its child 

leaf node correspond to a feature-value pair 

(such as the feature color and the constant blue). 

Two special features which are distinguished by 

the planner are id and reference-id, which are 

used for co-referencing such as for annotating 

anaphora and their antecedents. The remaining 

features model the simulated robotic domain. For 

RCL Element Description 

action 
Aligned to a verbal group in NL, 

e.g. ‘drop’ or ‘pick up’. 

cardinal Number (e.g. 2 or ‘three’). 

color Colored attribute of an entity. 

destination A spatial destination. 

entity Entity within the domain. 

event Specification of a command. 

id Id for anaphoric references. 

indicator Spatial attribute of an entity. 

measure Used for distance metrics. 

reference-id A resolved reference. 

relation Relation type (e.g. ‘above’). 

sequence 
Used to specify a sequence of 

events or statements. 

spatial-relation 

Used to specify a spatial relation 

between two entities or to de-

scribe a location. 

type Used to specify an entity type. 

Table 1: Universal semantic elements in RCL. 

Category Values 

Actions move, take, drop 

Relations 

left, right, above, below, 

forward, backward, adjacent, 

within, between, nearest, near, 

furthest, far, part 

Indicators 

left, leftmost, right, rightmost, 

top, highest, bottom, lowest, 

front, back, individual, furthest, 

nearest, center 

entity types 

cube, prism, corner, board stack, 

row, column, edge, tile, robot, 

region, reference, type-reference 

Colors 
blue, cyan, red, yellow, 

green, magenta, gray, white 

Table 2: Semantic categories customized for the task. 

example, the values of the action feature are the 

moves used to control the robotic arm, while 

values of the type and relation features are the 

entity and relation types understood by the spa-

tial planner (Table 2). As well as qualitative rela-

tions (such as ‘below’ or ‘above’), the planner 

also accepts spatial relations that include quanti-

tative measurements, such as in ‘two squares left 

of the red prism’ (Figure 5). 

 

 

Fig.ure 5: A quantitative relation with a landmark. 

RCL distinguishes between relations which 

relate entities and indicators, which are attributes 

of entities (such as ‘left’ in ‘the left cube’). For 

the task, participants are asked to map NL sen-

tences to well-formed RCL by identifying spatial 

relations and indicators, then parsing higher-level 

entities and events. Finally, a well-formed RCL 

tree with an event (or sequence of events) at top-

level is given the simulator for execution. 

4 Evaluation Metrics 

Out of the 3,400 sentences annotated for the task, 

2,500 sentences were provided to participants for 

system training. During evaluation, trained sys-

tems were presented with 909 previously unseen 

sentences and asked to generate corresponding 

RCL statements, with access to the spatial plan-

ner for additional context. To keep the evaluation 

process as simple as possible, each parser’s out-

put for a sentence was scored as correct if it ex-

actly matched the expected RCL statement in the 

treebank. Participants were asked to calculate 

two metrics, P and NP, which are the proportion 

of exact matches with and without using the spa-

tial planner respectively: 
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System Authors Statistical? Strategy P NP NP - P 

UW-MRS Packard Hybrid Rule-based ERG + Berkeley parser 92.50 90.50 -2.00 

AT&T Labs Stoyanchev et al. Statistical Statistical maximum entropy parser 87.35 60.84 -26.51 

RoBox Evang and Bos Statistical CCG parser + structured perceptron 86.80 79.21 -7.59 

Shrdlite Ljunglöf Rule-based Hand crafted domain-specific grammar 86.10 51.50 -34.60 

KUL-Eval Mattelaer et al. Statistical CCG parser 71.29 57.76 -13.53 

UWM Kate Statistical KRISP parser N/A 45.98 N/A 

 

Table 3: System results for supervised semantic parsing of the Robot Commands Treebank 

(P = parsing with integrated spatial planning, NP = parsing without integrated spatial planning, 

NP - P = drop in performance without integrated spatial planning, N/A = performance not available). 

 

 

These metrics contrast with measures for par-

tially correct parsed structures, such as Parseval 

(Black et al., 1991) or the leaf-ancestor metric 

(Sampson and Babarczy, 2003). The rationale for 

using a strict match is that in the integrated sys-

tem, a command will only be executed if it is 

completely understood, as both the spatial plan-

ner and the simulator require well-formed RCL. 

5 Systems and Results 

Six teams participated in the shared task using a 

variety of strategies (Table 3). The last measure 

in the table gives the performance drop without 

spatial context. The value NP - P = -2 for the 

best performing system suggests this as an upper 

bound for the task. The different values of this 

measure indicate the sensitivity to (or possibly 

reliance on) context to guide the parsing process. 

In the remainder of this section we compare the 

approaches and results of the six systems. 

 

UW-MRS: Packard (2014) achieved the best 

score for parsing both with and without spatial 

context, at 92.5% and 90.5%, respectively, using 

a hybrid system that combines a rule-based 

grammar with the Berkeley parser (Petrov et al., 

2006). The rule-based component uses the Eng-

lish Resource Grammar, a broad coverage hand-

written HPSG grammar for English. The ERG 

produces a ranked list of Minimal Recursion 

Semantics (MRS) structures that encode predi-

cate argument relations (Copestake et al., 2005). 

Approximately 80 rules were then used to con-

vert MRS to RCL. The highest ranked result that 

is validated by the spatial planner was selected as 

the output of the rule-based system. Using this 

approach, Packard reports scores of P = 82.4% 

and NP = 80.3% for parsing the evaluation data. 

To further boost performance, the Berkeley 

parser was used for back-off. To train the parser, 

the RCL treebank was converted to phrase struc-

ture by removing non-aligned nodes and insert-

ing additional nodes to ensure one-to-one align-

ment with words in NL sentences. Performance 

of the Berkeley parser alone was NP = 81.5% (no 

P-measure was available as spatial planning was 

not integrated). 

To combine components, the ERG was used 

initially, with fall back to the Berkeley parser 

when no contextually compatible RCL statement 

was produced. The hybrid approach improved 

accuracy considerably, with P = 92.5% and NP = 

90.5%. Interestingly, Packard also performs pre-

cision and recall analysis, and reports that the 

rule-based component had higher precision, 

while the statistical component had higher recall, 

with the combined system outperforming each 

separate component in both precision and recall. 

 

AT&T Labs Research: The system by Stoy-

anchev et al. (2014) scored second best for con-

textual parsing and third best for parsing without 

using the spatial planner (P = 87.35% and NP = 

60.84%). In contrast to Packard’s UW-MRS 

submission, the AT&T system is a combination 

of three statistical models for tagging, parsing 

and reference resolution. During the tagging 

phase, a two-stage sequence tagger first assigns a 

part-of-speech tag to each word in a sentence, 

followed by an RCL feature-value pair such as 

(type: cube) or (color: blue), with unaligned 

words tagged as ‘O’. For parsing, a constituency 

parser was trained using non-lexical RCL trees. 

Finally, anaphoric references were resolved us-

ing a maximum entropy feature model. When 

combined, the three components generate a list 

of weighted RCL trees, which are filtered by the 

spatial planner. Without integrated planning, the 

most-probable parse tree is selected. 

In their evaluation, Stoyanchev et al. report 

accuracy scores for the separate phases as well as 

for the combined system. For the tagger, they 

report an accuracy score of 95.2%, using the 
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standard split of 2,500 sentences for training and 

909 for evaluation. To separately measure the 

joint accuracy of the parser together with refer-

ence resolution, gold-standard tags were used 

resulting in a performance of P = 94.83% and NP 

= 67.55%. However, using predicted tags, the 

system’s final performance dropped to P = 

87.35% and NP = 60.84%. To measure the effect 

of less supervision, the models were additionally 

trained on only 500 sentences. In this scenario, 

the tagging model degraded significantly, while 

the parsing and reference resolution models per-

formed nearly as well. 

 

RoBox: Using Combinatory Categorial Grammar 

(CCG) as a semantic parsing framework has 

been previously shown to be suitable for translat-

ing NL into logical form. Inspired by previous 

work using a CCG parser in combination with a 

structured perceptron (Zettlemoyer and Collins, 

2007), RoBox (Evang and Bos, 2014) was the 

best performing CCG system in the shared task 

scoring P = 86.8% and NP = 79.21%. 

Using a similar approach to UW-MRS for its 

statistical component, RCL trees were interpreted 

as phrase-structure and converted to CCG deriva-

tions for training. During decoding, RCL state-

ments were generated directly by the CCG 

parser. However, in contrast to the approach used 

by the AT&T system, RoBox interfaces with the 

planner during parsing instead of performing 

spatial validation a post-processing step. This 

enables early resolution of attachment ambiguity 

and helps constrain the search space. However, 

the planner is only used to validate entity ele-

ments, so that event and sequence elements were 

not validated. As a further difference to the 

AT&T system, anaphora resolution was not per-

formed using a statistical model. Instead, multi-

ple RCL trees were generated with different can-

didate anaphoric references, which were filtered 

out contextually using the spatial planner. 

RoBox suffered only a 7.59% absolute drop in 

performance without using spatial planning, sec-

ond only to UW-MRS at 2%. Evang and Bos 

perform error analysis on RoBox and report that 

most errors relate to ellipsis, the ambiguous word 

one, anaphora or attachment ambiguity. They 

suggest that the system could be improved with 

better feature selection or by integrating the CCG 

parser more closely with the spatial planner. 

 

Shrdlite: The Shrdlite system by Ljunglöf 

(2014), inspired by the Classic SHRDLU system 

by Winograd (1972), is a purely rule-based sys-

tem that was shown to be effective for the task. 

Scoring P = 86.1% and NP = 51.5%, Shrdlite 

ranked fourth for parsing with integrated plan-

ning, and fifth without using spatial context. 

However, it suffered the largest absolute drop in 

performance without planning (34.6 points), in-

dicating that integration with the planner is es-

sential for the system’s reported accuracy. 

Shrdlite uses a hand-written compact unifica-

tion grammar for the fragment of English appear-

ing in the training data. The grammar is small, 

consisting of only 25 grammatical rules and 60 

lexical rules implemented as a recursive-descent 

parser in Prolog. The lexicon consists of 150 

words (and multi-word expressions) divided into 

23 lexical categories, based on the RCL pre-

terminal nodes found in the treebank. In a post-

processing phase, the resulting parse trees are 

normalized to ensure that they are well-formed 

by using a small set of supplementary rules. 

However, the grammar is highly ambiguous 

resulting in multiple parses for a given input sen-

tence. These are filtered by the spatial planner. If 

multiple parse trees were found to be compatible 

with spatial context (or when not using the plan-

ner), the tree with the smallest number of nodes 

was selected as the parser’s final output. Addi-

tionally, because both the training and evaluation 

data were collected via crowdsourcing, sentences 

occasionally contain spelling errors, which were 

intentionally included in the task. To handle mis-

spelt words, Shrdlite uses Levenshtein edit dis-

tance with a penalty to reparse sentences when 

the parser initially fails to produce any analysis. 

 

KUL-Eval: The CCG system by Mattelaer et al. 

(2014) uses a different approach to the RoBox 

system described previously. KUL-Eval scored P 

= 71.29% and NP = 57.76% in comparison to the 

RoBox scores of P = 86.8% and NP = 79.21%. 

During training, the RCL treebank was con-

verted to λ-expressions. This process is fully re-

versible, so that no information in an RCL tree is 

lost during conversion. In contrast to RoBox, but 

in common with the AT&T parser, KUL-Eval 

performs spatial validation as a post-processing 

step and does not integrate the planner directly 

into the parsing process. A probabilistic CCG is 

used for parsing, so that multiple λ-expressions 

are returned (each with an associated confidence 

measure) that are translated into RCL. Finally, in 

the validation step, the spatial planner is used to 

discard RCL statements that are incompatible 

with spatial context and the remaining most-

probable parse is returned as the system’s output. 
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Mattelaer et al. note that in several cases the 

parser produced partially correct statements but 

that these outputs did not contribute to the final 

score, given the strictly matching measures used 

for the P and NP metrics. However, well-formed 

RCL statements are required by the spatial plan-

ner and robotic simulator for the integrated sys-

tem to robustly execute the specified NL com-

mand. Partially correct structures included state-

ments which almost matched the expected RCL 

tree with the exception of incorrect feature-

values, or the addition or deletion of nodes. The 

most common errors were feature-values with 

incorrect entity types (such as ‘edge’ and ‘re-

gion’) and mismatched spatial relations (such as 

confusing ‘above’ and ‘within’ and confusing 

‘right’, ‘left’ and ‘front’). 

 

UWM: The UWM system submitted by Kate 

(2014) uses an existing semantic parser, KRISP, 

for the shared task. KRISP (Kernel-based Robust 

Interpretation for Semantic Parsing) is a trainable 

semantic parser (Kate and Mooney, 2006) that 

uses Support Vector Machines (SVMs) as the 

machine learning method with a string subse-

quence kernel. As well as training data consisting 

of RCL paired with NL commands, KRISP re-

quired a context-free grammar for RCL, which 

was hand-written for UWM. During training, id 

nodes were removed from the RCL trees. These 

were recovered after parsing in a post-processing 

phase to resolve anaphora by matching to the 

nearest preceding antecedent. 

In contrast to other systems submitted for the 

task, UWM does not interface with the spatial 

planner and parses purely non-contextually. Be-

cause the planner was not used, the system’s ac-

curacy was negatively impacted by simple issues 

that may have been easily resolved using spatial 

context. For example, in RCL, the verb ‘place’ 

can map to either drop or move actions, depend-

ing on whether or not a block is held in the grip-

per in the corresponding spatial scene. Without 

using spatial context, it is hard to distinguish be-

tween these cases during parsing. 

The system scored a non-contextual measure 

of NP = 45.98%, with Kate reporting a 51.18% 

best F-measure (at 72.67% precision and 39.49% 

recall). No P-measure was reported as the spatial 

planner was not used. Due to memory constraints 

when training the SVM classifiers, only 1,500 

out of 2,500 possible sentences were used from 

the treebank to build the parsing model. How-

ever, it may be possible to increasing the size of 

training data in future work through sampling. 

6 Discussion 

The six systems evaluated for the task employed 

a variety of semantic parsing strategies. With the 

exception of one submission, all systems inter-

faced with the spatial planner, either in a post-

processing phase, or directly during parsing to 

enable early disambiguation and to help con-

strain the search space. An open question that 

remains following the task is how applicable 

these methods would be to other domains. Sys-

tems that relied heavily on the planner to guide 

the parsing process could only be adapted to do-

mains for a which a planner could conceivably 

exist. For example, nearly all robotic tasks such 

as such as navigation, object manipulation and 

task execution involve aspects of planning. NL 

question-answering interfaces to databases or 

knowledge stores are also good candidates for 

this approach, since parsing NL questions into a 

semantic representation within the context of a 

database schema or an ontology could be guided 

by a query planner. 

However, approaches with a more attractive 

NP - P measure (such as UW-MRS and RoBox) 

are arguably more easily generalized to other 

domains, as they are less reliant on a planner. 

Additionally, the usual arguments for rule-based 

systems verses supervised statistical systems ap-

ply to any discussion on domain adaptation: rule-

based systems require human manual effort, 

while supervised statistical systems required an-

notated data for the new domain. 

In comparing the best two statistical systems 

(AT&T and RoBox) it is interesting to note that 

these performed similarly with integrated plan-

ning (P = 87.35% and 86.80%, respectively), but 

differed considerably without planning (NP = 

60.84% and 79.21%). As these two systems em-

ployed different parsers (a constituency parser  

and a CCG parser), it is difficult to perform a 

direct comparison to understand why the AT&T 

system is more reliant on spatial context. It 

would also be interesting to understand, in fur-

ther work, why the two CCG-based systems dif-

fered considerably in their P and NP scores. 

It is also surprising that the best performing 

system, UW-MRS, suffered only a 2% drop in 

performance without using the planner, demon-

strating clearly that in the majority of sentences 

in the evaluation data, spatial context is not actu-

ally required to perform semantic parsing. Al-

though as shown by the NP - P scores, spatial 

context can dramatically boost performance of 

certain approaches for the task when used. 
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7 Conclusion and Future Work 

This paper described a new task for SemEval: 

Supervised Semantic Parsing of Robotic Spatial 

Commands. Despite its novel nature, the task 

attracted high-quality submissions from six 

teams, using a variety of semantic parsing strate-

gies. 

It is hoped that this task will reappear at Se-

mEval. Several lessons were learnt from this first 

version of the shared task which can be used to 

improve the task in future. One issue which sev-

eral participants noted was the way in which the 

treebank was split into training and evaluation 

datasets. Out of the 3,409 sentences in the tree-

bank, the first 2,500 sequential sentences were 

chosen for training. Because this data was not 

randomized, certain syntactic structures were 

only found during evaluation and were not pre-

sent in the training data. Although this may have 

affected results, all participants evaluated their 

systems against the same datasets. Based on par-

ticipant feedback, in addition to reporting P and 

NP-measures, it would also be illuminating to 

include a metric such as Parseval F1-scores to 

measure partial accuracy. An improved version 

of the task could also feature a better dataset by 

expanding the treebank, not only in terms of size 

but also in terms of linguistic structure. Many 

commands captured in the annotation game are 

not yet represented in RCL due to linguistic phe-

nomena such as negation and conditional state-

ments. 

Looking forward, a more promising approach 

to improving the spatial planner could be prob-

abilistic planning, so that semantic parsers could 

interface with probabilistic facts with confidence 

measures. This approach is particularly suitable 

for robotics, where sensors often supply noisy 

signals about the robot’s environment. 
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