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Abstract

Sometimes modifiers have a strong effect
on core aspects of the meaning of the
nouns they are attached to: A parrot is
a desirable pet, but a dead parrot is, at
the very least, a rather unusual household
companion. In order to stimulate compu-
tational research into the impact of mod-
ification on phrase meaning, we collected
and made available a large dataset contain-
ing subject ratings for a variety of noun
phrases and the categories they might be-
long to. We propose to use compositional
distributional semantics to model these
data, experimenting with numerous distri-
butional semantic spaces, phrase compo-
sition methods and asymmetric similarity
measures. Our models capture a statis-
tically significant portion of the data, al-
though much work is still needed before
we achieve a full computational account of
modification effects.

1 Introduction

Not all modifiers are created equal. Green parrots
have all essential qualities of parrots, but dead par-
rots don’t. For example, as vocally argued by the
disgruntled costumer in Monty Python’s famous
Dead Parrot Sketch,1 dead parrots make rather
poor pet birds. In modifier-head constructions
(that, for the purpose of this article, we restrict to
right-headed adjective-noun and noun-noun con-
structions), modifiers are not simply picking a sub-
set of the denotation of the head they modify, but
they are often distorting the properties of the head
in a radical manner.

These modifier effects on phrase meaning have
been studied extensively by theoretical linguists,

1http://en.wikipedia.org/wiki/Dead_
Parrot_sketch

who have focused primarily on the extreme case
of intensional modifiers such as fake, alleged and
toy, where the phrase denotes something that is
no longer (or is not necessarily) a head (a toy
gun is not a gun). See McNally (2013) for a re-
cent review of the linguistic literature. Cognitive
scientists have looked at modification phenomena
within the general study of conceptual combina-
tion (see Chapter 12 of Murphy (2002) for an ex-
tensive review). The cognitive tradition has fo-
cused on how modification affects prototypicality:
a guppy is the prototypical pet fish, but it is neither
a typical pet nor a typical fish (Smith and Osher-
son, 1984). This line of research has highlighted
how strong modification effects might be the rule,
rather than the exception: Wisniewski (1997) re-
ports that, when subjects were asked to provide
the meaning for more than 200 novel modifier-
head constructions, “70% [of the answers] in-
volved the construal of a noun’s referent as some-
thing other than the typical category named by the
noun [head].” Indeed, recent research suggests
that even the most stereotypical modifiers affect
prototypicality, so that subjects are less willing
to attribute to quacking ducks such obvious duck
properties as having webbed feet (Connolly et al.,
2007).

The impact of modification on phrase mean-
ing is not only very interesting from a linguistic
and cognitive perspective, but also important from
a practical point of view, as it might affect ex-
pected entailment patterns: If parrot entails pet,
then lively parrot also entails pet. However, as we
saw above, dead parrot doesn’t necessarily entail
pet (at least not from the point of view of a dis-
gruntled costumer who was just sold the corpse).
Being able to track the impact that modifiers have
on heads should thus have a positive effect on im-
portant tasks such as recognizing textual entail-
ment, paraphrasing and anaphora resolution (An-
droutsopoulos and Malakasiotis, 2010; Dagan et

171



al., 2009; Poesio et al., 2010).
Despite their theoretical and practical import,

modification effects have been largely overlooked
in computational linguistics, with the notable ex-
ception of Boleda et al. (2012; 2013), who only
focused on the extreme case of intensional adjec-
tives, studied a limited number of modifiers, and
did not attempt to capture the graded nature of
modification (a dead parrot is not a prototypical
animal, but a toy parrot is not an animal at all).

This paper aims to stimulate computational re-
search into modifier effects on phrase meaning in
two ways. First, we introduce a new, large, pub-
licly available data set of modifier-head phrases
annotated with four kinds of modification-related
subject ratings: whether the concept denoted by
the phrase is an instance of the concept denoted by
its head (is a dead parrot still a parrot?), to what
extent it is a member of one of the larger categories
the head belongs to (is it still a pet?), and typical-
ity ratings for the same questions (how typical is a
dead parrot as a parrot? and as a pet?).

Second, we present a first attempt to model the
collected judgments computationally. We choose
distributional semantics (Erk, 2012) as our frame
of reference, as it produces continuous similarity
scores, in line with the graded nature of the mod-
ification effects we are investigating. In partic-
ular, we look at the compositional extension of
distributional semantics (Baroni, 2013), because
we need representations not only for words, but
also phrases, and we adopt the asymmetric simi-
larity measures developed in the literature on lex-
ical entailment (Kotlerman et al., 2010; Lenci and
Benotto, 2012), because we are interested in an
asymmetric relation (to what extent the concept
denoted by the phrase is a good instance of the tar-
get class, and not vice versa). As far as we know,
this is the first time these asymmetric measures
are applied to composed representations (Baroni
et al. (2012) experimented with entailment mea-
sures applied to phrase representations directly
harvested from corpora, and not derived composi-
tionally). We are thus also providing a novel eval-
uation of compositional models and asymmetric
measures on a challenging task where they could
potentially be very useful.2

2Connell and Ramscar (2001) showed good correlation of
similarity scores produced by the LSA distributional seman-
tic model with human category typicality judgments, how-
ever they did not consider phrases nor adopted an asymmetric
measure to take directionality into account.

2 The Norwegian Blue Parrot data set

We introduce Norwegian Blue Parrot (NBP),3 a
new, large data set to explore modification effects.
Given a head noun h and a modifier adjective or
noun m, NBP contains average membership and
typicality ratings for the phrase mh both as an
instance of h and as an instance of c (a broader
category h belongs to). As a control, we also
present ratings for unmodified h as an instance
of c (we will use them below to test similarity
measures on their ability to capture the direction
of the membership relation, and to zero in on the
effect of modification vs. more general member-
ship/typicality effects). We include, and indeed fo-
cus on, relations with broader categories because
they are more prone to modification effects: In-
tuitively, a dead parrot is still a parrot, but it is,
at the very least, an atypical pet. The statistics
in Table 1, discussed below, confirm our intuition
that subjects are more likely to assign lower scores
with respect to a broader category than to the head
category itself (although this is, no doubt, in part
by construction, since we started constructing the
dataset by mining examples where mh is atypi-
cal of c, not h). We collect both membership and
typicality ratings because we expect them to have
different implications for sound entailment. If x
is not a member of class y, then x obviously does
not entail y. However, if x is an atypical y, en-
tailment still holds, but some typical properties of
y might not carry over (e.g., in an anaphora reso-
lution setting, we might still consider co-indexing
dead parrot with animal, but not with breathing
creature, despite the fact that breathing is a highly
characteristic property of animals).

In order to make sure that NBP would contain a
fair number of examples affected by strong mod-
ification effects, we first came up with a set of
〈m,h, c〉 tuples where, according to our own in-
tuition, m makes h fairly atypical as an instance
of c. For example, a bottle is a piece of drinkware.
If we add the modifier perfume, we expect that,
while subjects might still agree that a perfume bot-
tle is a bottle, they should generally disagree on
the statement that a perfume bottle belongs to the
drinkware category. We refer to tuples of this
sort (e.g., 〈perfume, bottle, drinkware〉) as dis-
torted tuples in what follows.4

3Available from http://clic.cimec.unitn.it/
composes/

4When creating the tuples, we also used some adjectives
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We then constructed a number of tuples that
should not display a strong modification effect. In
particular, in order to insure that any atypical rat-
ing we obtained on the distorted tuples could not
be explained away by characteristics of m or h
alone (rather than by their combination), for each
distorted tuple we constructed a few more tuples
with the same h and c but a different m, that
we did not expect to be strongly distorting (e.g.,
〈plastic, bottle, drinkware〉). Similarly, for each
distorted tuple we generated a few more with the
same m, but combined with (the same or differ-
ent) h and c on which the m should not exert a
strong effect (〈perfume, bottle, container〉). In
total, NBP is based on 489 distorted tuples and
1938 more matching tuples.

We constructed NBP to insure that it would
contain many tuples displaying strong modifica-
tion effects, and highly comparable tuples that do
not feature such effects. An alternative approach
would have been to rate phrases that were ran-
domly selected from a corpus. This would have
led to a dataset reflecting a more realistic distribu-
tion of modification effects, but it would not have
guaranteed, for the same number of pairs, a fair
amount of distorted tuples and comparable con-
trols. We leave the study of the natural distribution
of modification strength in text to further work.

To find inspiration for the tuples, we looked into
various databases containing concepts organized
by category, namely BLESS (Baroni and Lenci,
2011), ConceptNet (Speer and Havasi, 2013) and
WordNet (Fellbaum, 1998). We insured that all
words in our tuples occurred at least 200 times in
the large corpus we describe below (phrases were
not filtered by frequency, due to data sparseness).
Finally, when looking for tuples matching the dis-
torted ones, we made sure that the mh phrases in
the new tuples have similar Pointwise Mutual In-
formation to the corresponding phrases in the dis-
torted tuple (or, where the latter were not attested
in the corpus, similar m and h frequencies). Find-
ing meaningful combinations among unattested or
infrequent phrases was not an easy task and there
was not always a perfect candidate. However, the
phrases selected in this way yielded challenging
items for which there is little or no direct cor-
pus evidence, so that compositional models are re-
quired to account for them.

that have been traditionally labeled as intensional by seman-
ticists: artificial, toy, former.

From each source tuple (e.g.,
〈plastic, bottle, drinkware〉), we generated 3
instance-class combinations to be rated: mh → c
(plastic bottle → drinkware), mh → h (plastic
bottle→ bottle), h→ c (bottle→ drinkware), for
a total of 5,849 pairs, that constitute the final NBP
data set (2,417 mh → c pairs, 2,115 mh → h
pairs and 1,317 h→ c pairs).5

For each of these pairs, we collected both mem-
bership and typicality ratings through two surveys
on the CrowdFlower platform.6 Subjects came
exclusively from English speaking countries and
no special qualifications were required from them.
Membership ratings were collected by asking sub-
jects whether the instance is a member of the class
(formulated as a yes/no question). In a separate
study, we asked subjects to rate how typical the in-
stance is as member of the class on a 7-point scale.
For both questions, we collected 10 judgments per
pair and report their averages in NBP. For both sur-
veys, we added 48 control pairs with an expected
answer (yes/no for membership, high/low range
for typicality), that the subjects had to provide in
order for their ratings to be included in the final
set (“gold standard” items in crowd-sourcing par-
lance). These controls included highly prototypi-
cal pairs (dog→ animal), possibly with stereotyp-
ical modifiers (beautiful rose→ flower), and unre-
lated pairs (biology→ dance), also possibly under
modification (popular magazine→ animal).

We asked for binary rather than graded member-
ship judgments because these are more in line with
commonsense intuitions about category member-
ship (we might naturally speak of sparrows being
more typical birds than penguins, but it is strange
to say that they are “more birds”). The standard
view in the psychology of concepts (Hampton,
1991) is that membership judgments are the prod-
uct of a hard threshold we impose on the typicality
scale (x is not y if the typicality of x as y is below
a certain, subject-dependent threshold), although
under certain experimental conditions subjects can
also conceptualize membership as a graded prop-
erty (Kalish, 1995).

Membership and typicality ratings, especially
in borderline cases such as those we constructed,
are the output of complex cognitive processes
where large inter-subject differences are expected,

5There is a larger number of mh → c pairs because dif-
ferent tuples can lead to the same mh→ h or h→ c combi-
nations.

6http://crowdflower.com/
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measure mh→ c mh→ h h→ c tot.
memb. 0.84 (0.2) 0.97 (0.1) 0.88 (0.2) 0.89 (0.2)
typ. 5.45 (1.1) 6.29 (0.6) 5.81 (1.0) 5.84 (1.0)

Table 1: NBP summary statistics: Mean average
ratings and their standard deviations across pairs,
itemized by instance-class type and in total. Mem-
bership values range from 0 to 1, typicality values
from 1 to 7.

so it doesn’t make sense to worry about “inter-
annotator agreement” in this context. Still, several
sanity checks indicate that, overall, our subjects
understood our questions as we meant them, and
behaved in a reasonably coherent manner. First,
both average membership and typicality, ratings
are significantly lower (p < 0.001) for the mh →
c pairs deriving from those tuples that we manu-
ally labeled as distorted than for the non-distorted
ones. Moreover, for membership, in 86% of the
cases at least 8 over 10 subjects gave the same re-
sponse. For typicality, the observed average rat-
ing standard deviation across pairs (1.2) is signifi-
cantly below what expected by chance (p < 0.05),
based on a simulated random rating distribution.
Membership and typicality ratings are highly cor-
related, but not identical (r = 0.76)

Table 1 reports mean membership and typicality
scores in NBP. Both ratings are negatively skewed,
that is, subjects had the tendency to respond as-
sertively to the membership question and to give
high typicality scores. This is not surprising: Be-
cause of the way NBP was constructed, there are
about 4 tuples with no expected strong modifica-
tion effect for each distorted tuple. Furthermore,
except for the negative control items (not entered
in NBP), our questions did not feature cases where
a negative/low response would be entirely straight-
forward (of the “is a cat a building?” kind). We
observe moreover that, in accordance with the in-
tuition we discussed at the beginning of this sec-
tion, the ratings are extremely high when the class
is identical to the phrase head. On the other hand,
the mh → c condition displays, as expected, the
lowest averages, suggesting that this will be the
most interesting type to model experimentally.

Table 2 presents a few example entries from
NBP. The first block of the table illustrates cases
with the highest possible membership and typical-
ity scores. At the other extreme, the second block
contains examples with very low membership and
typicality. Interestingly, there are also cases, such

instance class memb. typ.
top membership, top typicality

gourmet soup food 1.00 7.00
huge tiger predator 1.00 7.00

sugared soda drink 1.00 7.00
live fish animal 1.00 7.00
Thai rice rice 1.00 7.00

silver spoon spoon 1.00 7.00
low membership, low typicality

fatal shooting sport 0.20 1.40
human egg food 0.40 1.50

perfume bottle drinkware 0.10 1.30
explosive vest commodity 0.30 1.90
lemon water chemical 0.20 1.60
creamy rice bean 0.20 1.30
top membership, (relatively) low typicality

sick tuna tuna 1.00 3.20
explosive vest vest 1.00 3.50

perforated sieve tool 1.00 4.20
bottled oxygen substance 1.00 4.30

grilled trout creature 1.00 4.40
educational toy amusement 1.00 4.50

Table 2: Instance-class pairs illustrating various
combinations of membership and typicality rat-
ings in NBP.

as the ones in the third block of the table, where all
subjects agreed on class membership, but the typ-
icality scores are relatively low (we did not find
clear cases of the opposite pattern, and indeed we
would have been surprised to find highly typical
instances of a class not being treated as members
of the class).

Some examples in Table 2 illustrate an impor-
tant design choice we made in constructing NBP,
namely, to ignore the issue of whether potential
modification effects are actually due to the modi-
fier and the category pertaining to different word
senses of the head term. One might argue, for
example, that egg has a food sense and a repro-
ductive vessel sense. The human modifier picks
the second sense, and so, obviously, human eggs
are judged as bad instances of food. While we
see the point of this objection, we think it’s im-
possible to draw a clear-cut distinction between
discrete word senses (even in the rather extreme
egg case, the eggs we eat are reproductive ves-
sels from a chicken point of view!). This has
been long recognized in the linguistic and cog-
nitive literature (Kilgarriff, 1997; Murphy, 2002),
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and even by the computational word sense disam-
biguation community, that is currently addressing
the continuous nature of polysemy by shifting to
the lexical-substitution-in-context task (McCarthy
and Navigli, 2009). Context provides fundamen-
tal cues to disambiguating polysemous words, and
noun modifiers typically act as important disam-
biguating contexts for the nouns. Thus, we think
that it is more productive for computational sys-
tems to handle modifier-triggered disambiguation
as a special case of the more general class of mod-
ification effects, than to engage in the quixotic
pursuit to determine, a priori, what’s the bound-
ary between a word-sense and a “pure” modifi-
cation effect. Note in Table 2 that grilled trout
was unanimously rated by subjects as an instance
of the creature category, despite the fact that the
cooking-related grilled modifier cues a classic
shift from an animal (and thus creature) sense to
food (Copestake and Briscoe, 1995). Examples
like this suggest that our agnosticism is warranted.

3 Methods

3.1 Composition models

We experiment with many ways to derive a phrase
vector by combining the vectors of its constituents.
Mitchell and Lapata (2010) proposed a set of sim-
ple models in which each component of the phrase
vector is a function of the corresponding compo-
nents of the constituent vectors. Given vectors ~a
and~b, the weighted additive model (wadd) returns
their weighted sum: ~p = w1~a + w2

~b. In the dila-
tion model (dil), the output vector is obtained by
decomposing one of the input vectors, say ~b, into
a vector parallel to ~a and its orthogonal counter-
part, and then dilating only the parallel vector by a
factor λ before re-combining. The corresponding
formula is: (~a ·~a)~b + (λ − 1)(~a ·~b)~a. In our ex-
periments, we stretch the head vector in the direc-
tion of the modifier (i.e., ~a is the modifier, ~b is the
head). In the multiplicative model (mult), vectors
are combined by component-wise multiplication,
such that each phrase component pi is given by:
pi = aibi.

Guevara (2010) and Zanzotto et al. (2010) pro-
pose a full form of the additive model (fulladd),
where the two constituent vectors are multiplied
by weight matrices before being added, so that
each phrase component is a weighted sum of all
constituent components: ~p = W1~a+W2

~b.
Finally, the lexical function (lexfunc) model of

Baroni and Zamparelli (2010) and Coecke et al.
(2010) takes inspiration from formal semantics
to characterize composition as function applica-
tion. In particular, in modifier-head phrases, the
modifier is treated as a linear function operating
on the head vector. Given that linear functions
can be expressed by matrices and their application
by matrix-by-vector multiplication, the modifier is
represented by a matrix A to be multiplied with
the modifier vector~b, so that: ~p = A~b.

We use the DISSECT toolkit7 to estimate the
parameters of the composition methods and de-
rive phrase vectors. In particular, DISSECT finds
optimal parameter settings by learning to approx-
imate corpus-extracted phrase vector examples
with least-squares methods (Dinu et al., 2013).
We use as training examples all the modifier-head
phrases that contain a modifier of interest and oc-
cur at least 50 times in our source corpus (see Sec-
tion 3.3 below).

3.2 Asymmetric similarity measures

Several measures to identify word pairs that stand
in an instance-class relationship by comparing
their vectors have been proposed in the recent dis-
tributional semantics literature (Kotlerman et al.,
2010; Lenci and Benotto, 2012; Weeds et al.,
2004).8 While the task of deciding if u is in class v
is typically framed (also by distributional semanti-
cists) in binary, yes-or-no terms, all proposed mea-
sures return a continuous numerical score.9 Con-
sequently, we conjecture that they might be well-
suited to capture the graded notions of class mem-
bership and typicality we recorded in NBP.10

In what follows, we use wx(f) to denote the
weight (value) of feature (dimension) f in the dis-
tributional vector of term x. Fx denotes the set of
features (dimensions) in the vector of x such that
wx(f) > t, where t is a predefined threshold to
decide whether a feature is active.11 Importantly,

7http://clic.cimec.unitn.it/composes/
toolkit/

8We speak of “instance-class relations” in a very broad
and loose sense, to encompass classic relations such as hy-
ponymy but also the fuzzier notion of lexical entailment.

9SVM classifiers have also been shown by Baroni et al.
(2012) to be well-suited for entailment detection, but they do
not naturally return continuous scores.

10Subjects had to answer a yes/no question concerning
class membership, but by averaging their response we derive
continuous membership scores.

11The obvious choice for t is 0. However, when work-
ing with the low-rank spaces described in Section 3.3 below,
we set t to 0.1, since after SVD/NMF smoothing we observe
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all measures assume non-negative values.
Most asymmetric measures proposed in the lit-

erature build upon the distributional inclusion hy-
pothesis, stating that “if u is a semantically nar-
rower term than v, then a significant number
of salient distributional features of u is included
in the feature vector of v as well” (Lenci and
Benotto, 2012). In our terminology, u is the poten-
tial instance, and v is the class. We re-implement
all the measures adopted by Lenci and Benotto,
namely weedsprec, cosweeds, clarkede and invcl
(see their paper for the original references):

weedsprec(u, v) =

∑
f∈Fu∩Fv

wu(f)∑
f∈Fu

wu(f)

cosweeds(u, v) =
√

weedsprec(u, v)× cosine(u, v)

clarkede(u, v) =

∑
f∈Fu∩Fv

min(wu(f), wv(f))∑
f∈Fu

wu(f)

invcl(u, v) =
√

clarkede(u, v)× (1− clarkede(u, v))

The cosweeds formula combines weedsprec
with the widely used symmetric cosine measure:

cosine(u, v) =

∑
f∈Fu∩Fv

wu(f)× wv(f)√∑
f∈Fu

wu(f)2 ×
√∑

f∈Fv
wv(f)2

Finally, we experiment with the carefully
crafted balapinc measure of Kotlerman et al.
(2010):

balapinc(u, v) =
√

lin(u, v) · apinc(u, v)

where the lin term is computed as follows:

lin(u, v) =

∑
f∈Fu∩Fv

wu(f) + wv(f)∑
f∈Fu

wu(f) +
∑

f∈Fv
wv(f)

The balapinc score is the geometric average
of a symmetric similarity measure (lin) and the
strongly asymmetric apinc measure, that takes
large values when dimensions with high values in
the vector of the more specific term are also high
in the vector of the more general term (refer to
Kotlerman et al. (2010) for the apinc formula).

widespread low-frequency noise.

3.3 Distributional semantic spaces

We extract co-occurrence information from a cor-
pus of about 2.8 billion words obtained by con-
catenating ukWaC,12 Wikipedia13 and the British
National Corpus.14 With DISSECT, we build co-
occurrence vectors for the top 20K most frequent
lemmas in the source corpus (plus any NBP term
missing from this list). We treat the top 10K
most frequent lemmas as context elements. We
consider context windows of 2 and 20 words on
the two sides of the targets. We weight the vec-
tors by non-negative Pointwise Mutual Informa-
tion and Local Mutual Information (Evert, 2005).
We experiment with vectors in the resulting full-
rank (10K-dimensional) semantic spaces as well
as with vectors in spaces of ranks 100 and 300.
Rank reduction is performed by applying the Sin-
gular Value Decomposition (Golub and Van Loan,
1996) or Non-negative Matrix Factorization (Lee
and Seung, 2000). It is customary to represent the
output of these operations directly in a dense low-
dimensional space. However, the asymmetric sim-
ilarity measures we use assume sparse vectors (or
the “inclusion” criterion would be meaningless),
so we project back the outcome of SVD and NMF
to sparse 10K-dimensional but low-rank spaces. In
total, we explore 20 distinct semantic spaces.

We also collect co-occurrence vectors for
the phrases needed to estimate the composi-
tion method parameters (see Section 3.1 above).
We use DISSECT’s “peripheral space” option to
project the phrase raw count vectors into the vari-
ous spaces without affecting their structure.

Due to memory constraints, we restrict evalua-
tion in the full-rank spaces to the wadd and mult
models.

4 Experiments

Given the methods described above, the main
question we want to answer is: Which combina-
tion of compositional model and asymmetric sim-
ilarity measure yields a better fit for the data in the
NBP dataset?

We start however with a sanity check on the
ability of the measures to capture the direction of
the instance-class membership relation. Even a
measure that is good at capturing degrees of mem-
bership/typicality won’t be of much practical use

12http://wacky.sslmit.unibo.it
13http://en.wikipedia.org
14http://www.natcorp.ox.ac.uk

176



clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

10 8 11 8 7
Full-rank spaces

2 4 4 4 2

Table 3: Number of spaces (over totals of 16 low-
rank and 4 full-rank spaces) in which each mea-
sure was able to predict class membership direc-
tion significantly above chance.

if it is not able to tell us which item in a pair is the
instance and which is the class.

Detecting membership direction As described
in Section 2 above, NBP also contains single-
word h→ c pairs (parrot→ pet). We extracted
the subset of those that all judges considered to
be in the category membership relation, and we
checked them manually to make sure that the di-
rection was one-way only. This resulted in a set
of 639 pairs where the membership relation holds
unidirectionally. We tested all combination of se-
mantic spaces (Section 3.3) and asymmetric sim-
ilarity measures (Section 3.2) on the task of as-
signing a higher score to the pairs in the h → c
(vs. c → h) direction (e.g., (score(parrot →
pet) > score(pet → parrot)). Table 3 reports,
for each measure, the number of spaces in which
the measure was able to predict membership di-
rection significantly better than chance (binomial
test, p < 0.05). We report results on full- and
low-rank (SVD, NMF) spaces separately since, as
discussed above, for most composition models we
can only use the latter. We observe that all mea-
sures are able to significantly detect directionality
in at least some spaces. For all the analyses below,
we exclude from further testing the space-measure
combinations that failed to pass this sanity check,
since they are clearly failing to capture properties
pertaining to the instance-class relation (if a com-
bination is not able to tell that it is a parrot that is
a pet, and not vice versa, there is no point in ask-
ing if the same combination is able to model how
typical a dead parrot is as a pet).

Modeling typicality ratings of mh → c pairs
Next, for each of the remaining spaces, we first
performed composition as described in Section 3.1
above to build the representations for the nominal
phrases in the NBP dataset, and then computed
asymmetric similarity scores for pairs made of a

phrase and the corresponding potential class.

We computed the correlations between mean
human membership or typicality ratings and the
scores produced with each combination of com-
position model, similarity measure and space.
The resulting performance profiles for member-
ship and typicality are very highly correlated (r =
.99), and we thus report only the latter. We leave
it to further work to devise measures that are more
specifically tuned to capture membership or typi-
cality.

Table 4 reports the top correlation coefficients
between typicality judgments and scores of each
mh → c pair (dead parrot→ pet) across spaces,
organized by measures and composition meth-
ods. The best correlation is achieved with the
weedsprec measure using the mult composition
model in a full-rank space (precisely that of con-
text window size 2 and ppmi weighting). Recall
that mult returns the component-wise product of
the vectors it combines. Thus, modification un-
der mult is carried out by picking only those fea-
tures of the head that are also present in the mod-
ifier, and enhancing them by a factor given by the
modifier’s feature value. The weedsprec measure
is then given by the weighted proportion of active
features in mh that are also active in c. Therefore,
the more the modifier shares features with the par-
ent category, the higher weedsprec will be. This
might explain why weedsprec is a good fit for the
mult model in measuring degrees of category typ-
icality.

Looking at composition methods, there is no ev-
idence that the more complex, matrix-based ful-
ladd and lexfunc approaches are performing any
better than the simple multiplicative and additive
methods. Indeed, mult shows the most consistent
overall performance, confirming the conclusion of
Blacoe and Lapata (2012) that, at the present time,
when it comes to composition, “simpler is better”.
A related point emerges from the comparison of
the low- and full-rank results for mult and wadd.
The smoothing process due to dimensionality re-
duction is quite disruptive for the current asym-
metric measures, that are based on feature inclu-
sion. This is a further reason to stick to simpler
composition methods, that can be applied directly
in the full-rank spaces.

Regarding the measures themselves, we see that
cosweeds, that balances weedsprec with the clas-
sic cosine score, is the most robust, returning good
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clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 9* 15* 16* 19* 8*
fulladd 17* 16* 12* 24* −3
lexfunc 17* 12* 12* 27* −2

mult 13* 19* 19* 29* 12*
wadd 14* 14* 16* 27* −2

Full-rank spaces
mult 9* 39* 33* 36* 15*
wadd 30* 34* 31* 35* 14*

Table 4: Percentage Pearson r between asymmet-
ric similarity measures andmh→ c typicality rat-
ings. *p < 0.001

results across all composition methods. On the
other hand, the related clarkede and invcl mea-
sures turn out to be quite brittle.

The highly significant correlations show that the
measures do capture to some extent the patterns of
variance in the data. However, when considering
potential practical applications, even the highest
reported correlation (.39) is certainly not impres-
sive, indicating that there is plenty of room for fur-
ther research into developing better composition
methods and/or membership/typicality measures.

Focusing on the modifier effect for mh→ c
pairs The typicality judgment for dead parrot as
a pet is influenced by two factors: how typical par-
rots are as pets, and how much more or less typical
dead parrots are as pets, as opposed to parrots in
general. A good model must be able to capture
both factors (and this is what we tested above).
However, we are also interested in assessing to
what extent the models are capturing the modifi-
cation effectproper, as opposed to the overall de-
gree of typicality of the h concept as member of
the c category. To focus on the modification fac-
tor, we partialed out the h→c (parrot→pet) rat-
ings from the mh→c (dead parrot→pet) ratings
and from the corresponding model scores (that is,
we correlated the residuals of mh→c ratings and
model-produced scores after regressing the h→c
ratings on both). The results are shown in Table
5. Correlations are lower overall, but the general
picture from the previous analysis still holds, con-
firming that the computational models are (also)
capturing modifier effects. Interestingly, wadd, dil
and fulladd generally undergo larger performance
drops than mult and lexfunc. Evidently, models
like the latter, in which the modifier selects the
relevant features from the head, are better suited
to explain modification than the former, in which

clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 5 −1 −1 −2 7*
fulladd 10* 7* 5+ 7+ −2
lexfunc 15* 9* 10* 18* −2

mult 4+ 14* 13* 15* 9*
wadd 7+ 7* 9* 12+ −2

Full-rank spaces
mult 1 25* 21* 24* 5+
wadd 11* 18* 13* 20* 2

Table 5: Percentage Pearson r between asymmet-
ric similarity measures andmh→ c typicality rat-
ings where h → c scores have been partialed out.
*p < 0.001, +p < 0.05

the modifier features are just added to those of the
head by means of a linear combination.

Modeling typicality ratings of mh → h pairs
We repeated the first analysis for pairs of the type
mh → h (dead parrot→ parrot). The results,
shown in Table 6, are lower than in the previous
analysis. This is probably due to the fact that, as
discussed in Section 2, when the very same con-
cept is used as phrase head and category, judg-
ments are subject to a strong ceiling effect, and
none of our measures is designed to flatten out
above a certain threshold. Indeed, if we measure
the skewness of the typicality ratings,15 we obtain
that, while for h→ c and mh→ c the skewness is
of−1.9 and−1.5, respectively, formh→h it gets
to −3.9.

In any case, the results confirm the brittleness of
the clarkede and invcl measures. The linguistically
motivated lexfunc model emerges here as a com-
petitive alternative to the simpler models. Still, the
best results are obtained with mult and cosweeds
(on the full-rank, context window size 20, ppmi
weighted space). Notably, weedsprec applied to a
pair of the type mh→ h, where the phrase is con-
structed using the mult model, results in a constant
value of 1, whatever the modifier and the head
noun is. This is due to the fact that the features of
a phrase composed using mult are a subset of the
features of the head,16 and in this case the head is
the same as the category. Therefore, by definition,
weedsprec yields a score of 1 for every pair, the
variance is null and hence the correlation is unde-

15A skewness factor of 0 means that the distribution is bal-
anced around the mean, while the more negative the coeffi-
cient is, the more the left tail is longer and the distribution is
concentrated to the right (toward high typicality values in our
case).

16In set notation: Fu ∩ Fv = Fu since Fu ⊆ Fv
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clarkede weedsprec balapinc cosweeds invcl
Low-rank spaces

dil 2 −1 −2 −3 4
fulladd 5+ 5+ 2 1 −1
lexfunc 14* 8* 14* 17* −1

mult 3 - 13* 15* 5+
wadd 6+ 8* 7+ 6 −3

Full-rank spaces
mult −2 - 18* 19* −2
wadd 7* 13* 7* 12* −2

Table 6: Percentage Pearson r between asymmet-
ric similarity measures andmh→ h typicality rat-
ings. *p < 0.001, +p < 0.05

fined. As a consequence, in this case cosweeds,
which is the geometric mean between weedsprec
and cosine, reduces to cosine similarity! The latter
might be effective in capturing the degree of simi-
larity between the phrase and its potential category
but, as a symmetric measure, it cannot, alone, pro-
vide a full account of category typicality effects.

5 Conclusion

We introduced the challenge of quantifying the
impact of modification on the meaning of noun
phrases to the computational linguistics commu-
nity. We presented a new dataset that collects
membership and typicality ratings for modifier-
head phrases with respect to the category repre-
sented by the head as well as a broader category.
Since accounting for modifier distortion requires
semantic representations of phrases and model-
ing graded judgments, we consider this an ideal
testbed for compositional distributional semantics.

In the interaction between compositional mod-
els and directional similarity measures, we have
observed that simpler models yield better results.
Specifically, mult and wadd are economical com-
position models than can be applied on full-rank
spaces, which in turn work best with our similar-
ity measures.

Psychologists studying modification effects in
concept combination have proposed models that
are usually quite complex, relying on hand-crafted
feature definitions and making very strong as-
sumptions about the combination process (see for
example Cohen and Murphy (1984), Smith et al.
(1988)). Some of these assumptions have led other
researchers to argue that prototypes do not com-
pose at all (Connolly et al., 2007). In contrast,
the approach we borrow from distributional se-
mantics, while only mildly successful for now, has
the advantage of being very simple both in its con-

struction and application, and in the assumptions
that it makes.

Also notable is that we are putting under the
same umbrella tasks that have been traditionally
tackled separately. For example, among the ef-
fects present in the dataset, we can find both word
sense disambiguation (see discussion at the end of
Section 2) and what Murphy (2002) calls “knowl-
edge effects” (e.g., a plane makes a very good ma-
chine, but a paper plane doesn’t). Moreover, these
effects can also interact (people know that a hu-
man egg is actually a single, small cell, and hence
not even cannibals would consider it satisfactory
food). We can thus explore the empirical ques-
tion of whether all these related phenomena can
be tackled together, with a single model account-
ing for all of them.

In conclusion, the challenge that we intro-
duced brings together concept combination and
non-subsective modification phenomena studied
in psychology and theoretical linguistics, and tries
to handle them with the standard machinery of
computational linguistics. This challenge has
proved quite difficult for current tools, but this is
exactly what we expected in the first place. Our
goal, from the outset, was to create a task that
could help us delimiting the boundaries of com-
putational methods for characterizing human con-
cepts, while delimiting, at the same time, the no-
tion of human concepts itself.
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