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Abstract

This paper presents a large-scale evalua-
tion of bag-of-words distributional models
on two datasets from priming experiments
involving syntagmatic and paradigmatic
relations. We interpret the variation in
performance achieved by different settings
of the model parameters as an indication
of which aspects of distributional patterns
characterize these types of relations. Con-
trary to what has been argued in the litera-
ture (Rapp, 2002; Sahlgren, 2006) – that
bag-of-words models based on second-
order statistics mainly capture paradig-
matic relations and that syntagmatic rela-
tions need to be gathered from first-order
models – we show that second-order mod-
els perform well on both paradigmatic and
syntagmatic relations if their parameters
are properly tuned. In particular, our re-
sults show that size of the context window
and dimensionality reduction play a key
role in differentiating DSM performance
on paradigmatic vs. syntagmatic relations.

1 Introduction

Distributional takes on the representation and ac-
quisition of word meaning rely on the assump-
tion that words with similar meaning tend to oc-
cur in similar contexts: this assumption, known as
distributional hypothesis, has been first proposed
by Harris (1954). Distributional Semantic Mod-
els (henceforth, DSMs) are computational mod-
els that operationalize the distributional hypoth-
esis; they produce semantic representations for
words in the form of distributional vectors record-
ing patterns of co-occurrence in large samples of
language data (Sahlgren, 2006; Baroni and Lenci,
2010; Turney and Pantel, 2010). Comparison be-
tween distributional vectors allows the identifica-
tion of shared contexts as an empirical correlate of

the semantic similarity between the target words.
As noted in Sahlgren (2008), the notion of seman-
tic similarity applied in distributional approaches
to meaning is an easy target of criticism, as it is
employed to capture a wide range of semantic re-
lations, such as synonymy, antonymy, hypernymy,
up to topical relatedness.

The study presented in this paper contributes
to the debate concerning the nature of the seman-
tic representations built by DSMs, and it does so
by comparing the performance of several DSMs
in a classification task conducted on priming data
and involving paradigmatic and syntagmatic rela-
tions. Paradigmatic relations hold between words
that occur in similar contexts; they are also called
relations in absentia (Sahlgren, 2006) because
paradigmatically related words do not co-occur.
Examples of paradigmatic relations are synonyms
(e.g., frigid–cold) and antonyms (e.g., cold–hot).
Syntagmatic relations hold between words that co-
occur (relations in praesentia) and therefore ex-
hibit a similar distribution across contexts. Typi-
cal examples of syntagmatic relations are phrasal
associates (e.g., help–wanted) and syntactic collo-
cations (e.g., dog–bark).

Distributional modeling has already tackled the
issue of paradigmatic and syntagmatic relations
(Sahlgren, 2006; Rapp, 2002). Key contributions
of the present work are the scope of its evaluation
(in terms of semantic relations and model parame-
ters) and the new perspective on paradigmatic vs.
syntagmatic models provided by our results.

Concerning the scope of the evaluation, this is
the first study in which the comparison involves
such a wide range of semantic relations (paradig-
matic: synonyms, antonyms and co-hyponyms;
syntagmatic: syntactic collocations, backward and
forward phrasal associates). Moreover, our eval-
uation covers a large number of DSM parame-
ters: source corpus, size and direction of the con-
text window, criteria for feature selection, feature
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weighting, dimensionality reduction and index of
distributional relatedness. We consider the varia-
tion in performance achieved by different parame-
ter settings as a cue towards characteristic aspects
of specific relations (or groups of relations).

Our work also differs from previous studies
(Sahlgren, 2006; Rapp, 2002) in its focus on
second-order models. We aim to show that they
are able to capture both paradigmatic and syn-
tagmatic relations with appropriate parameter set-
tings. In addition, this focus provides a uniform
experimental design for the evaluation. For ex-
ample, parameters like window size and direction-
ality apply to bag-of-words DSMs and colloca-
tion lists but not to term-context models; dimen-
sionality reduction, whose effect has not yet been
explored systematically in the context of syntag-
matic and paradigmatic relations, is not applicable
to collocation lists.

This paper is structured as follows. Section 2
summarizes previous work. Section 3 describes
the experimental setup, in terms of task, datasets
and evaluated parameters. Section 4 introduces
our model selection methodology. Section 5
presents the results of our evaluation study. Sec-
tion 6 summarizes main findings and sketches on-
going and future work.

2 Previous Work

In this section we discuss previous work relevant
to the distributional modeling of paradigmatic and
syntagmatic relations. For space constraints, we
focus only on two studies (Rapp, 2002; Sahlgren,
2006) in which the two classes of relations are
compared at a global level, and not on studies
that are concerned with specific semantic rela-
tions, e.g., synonymy (Edmonds and Hirst, 2002;
Curran, 2003), hypernymy (Weeds et al., 2004;
Lenci and Benotto, 2012) or syntagmatic predicate
preferences (McCarthy and Carroll, 2003; Erk et
al., 2010), etc.

In previous studies, the comparison of syntag-
matic and paradigmatic relations has been imple-
mented in terms of an opposition between differ-
ent classes of corpus-based models: term-context
models (words as targets, documents or context re-
gions as features) vs. bag-of-words models (words
as targets and features) in Sahlgren (2006); col-
location lists vs. bag-of-words models in Rapp
(2002). Given the high terminological variation
in the literature, in this paper we will adopt the

labels syntagmatic and paradigmatic to character-
ize different types of semantic relations, and we
will use the labels first-order and second-order
to characterize corpus-based models with respect
to the kind of co-occurrence information they en-
code. We will refer to collocation lists and term-
document DSMs as first-order models, and to bag-
of-words DSMs as second-order models1.

Rapp (2002) integrates first-order (co-
occurrence lists) and second-order (bag-of-words
DSMs) information to distinguish syntagmatic
and paradigmatic relations. Under the assumption
that paradigmatically related words will be found
among the closest neighbors of a target word in
the DSM space and that paradigmatically and syn-
tagmatically related words will be intermingled
in the list of collocates of the target word, Rapp
proposes to exploit a comparison of the most
salient collocates and the nearest DSM neighbors
to distinguish between the two types of relations.

Sahlgren (2006) compares term-context and
bag-of-words DSMs in a number of tasks involv-
ing syntagmatic and paradigmatic relations. First,
a comparison between the thesaurus entries for tar-
get words (containing both paradigmatically and
syntagmatically related words) and neighbors in
the distributional spaces is conducted. It shows
that, while term-context DSMs produce both syn-
tagmatically and paradigmatically related words,
the nearest neighbors in a bag-of-words DSM
mainly provide paradigmatic information. Bag-
of-words models also performed better than term-
context models in predicting association norms,
in the TOEFL multiple-choice synonymy task and
in the prediction of antonyms (although the dif-
ference in performance was less significant here).
Last, word neighborhoods are analysed in terms of
their part-of-speech distribution. Sahlgren (2006)
observes that bag-of-words spaces contain more
neighbors with the same part of speech as the tar-
get than term-context spaces. He concludes that
bag-of-words spaces privilege paradigmatic rela-
tions, based on the assumption that paradigmati-
cally related word pairs belong to the same part of
speech, while this is not necessarily the case for
syntagmatically related word pairs.

1Term-document models encode first-order information
because dot products between row vectors are related to co-
occurrence counts of the corresponding words (within docu-
ments). More precisely, for a binary term-document matrix,
cosine similarity is identical to the square root of the MI2 as-
sociation measure. Please note that our terminology differs
from that of Schütze (1998) and Peirsman et al. (2008).
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Summing up, in both Rapp (2002) and Sahlgren
(2006) it is claimed that second-order models per-
form poorly in predicting syntagmatic relations.
However, neither of those studies involves datasets
containing exclusively syntagmatic relations, as
the evaluation focuses either on paradigmatic rela-
tions (TOEFL multiple choice test, antonymy test)
or on resources containing both types of relations
(thesauri, association norms).

3 Experimental Setting

3.1 Evaluation Task and Data

In this study, bag-of-words DSMs are evaluated on
two datasets containing experimental items from
two priming studies. Each item is a word triple
(target, consistent prime, inconsistent prime) with
a particular semantic relation between target and
consistent prime. Following previous work on
modeling priming effects as a comparison between
prime-target pairs (McDonald and Brew, 2004;
Padó and Lapata, 2007; Herdağdelen et al., 2009),
we evaluate our models in a classification task.
The goal is to identify the consistent prime on the
basis of its distributional relatedness to the tar-
get: if a particular DSM (i.e., a certain parame-
ter combination) is sensitive to a specific relation
(or group of relations), we expect the consistent
primes to be closer to the target in semantic space
than the inconsistent ones.

The first dataset is derived from the Semantic
Priming Project (SPP) (Hutchison et al., 2013).
To the best of our knowledge, our study repre-
sents the first evaluation of bag-of-words DSMs
on items from this dataset. The original data con-
sist of 1661 word triples (target, consistent prime,
inconsistent prime) collected within a large-scale
project aiming at characterizing English words in
terms of a set of lexical and associative/semantic
characteristics, along with behavioral data from
visual lexical decision and naming studies2. We
manually discarded all triples containing proper
nouns, adverbs or inflected words. We then
selected five subsets involving different seman-
tic relations, namely: synonyms (SYN), 436
triples (example of a consistent prime and tar-
get: frigid–cold); antonyms (ANT): 135 triples
(e.g., hot–cold); cohyponyms (COH): 159 triples
(e.g., table–chair); forward phrasal associates
(FPA): 144 triples (e.g., help–wanted); back-

2The dataset is available at http://spp.montana.edu/

ward phrasal associates (BPA): 89 triples (e.g.,
wanted–help).

The second priming dataset is the Generalized
Event Knowledge dataset (henceforth GEK), al-
ready evaluated in Lapesa and Evert (2013): a
collection of 402 triples (target, consistent prime,
inconsistent prime) from three priming studies
conducted to demonstrate that event knowledge
is responsible for facilitation of the processing
of words that denote events and their partici-
pants. The first study was conducted by Fer-
retti et al. (2001), who found that verbs facili-
tate the processing of nouns denoting prototypi-
cal participants in the depicted event and of ad-
jectives denoting features of prototypical partic-
ipants. The study covered five thematic rela-
tions: agent (e.g., pay–customer), patient, fea-
ture of the patient, instrument, location. The sec-
ond study (McRae et al., 2005) focussed on prim-
ing from nouns to verbs. It involved four re-
lations: agent (e.g., reporter–interview), patient,
instrument, location. The third study (Hare et
al., 2009) investigated priming from nouns to
nouns, referring to participants of the same event
or the event itself. The dataset involves seven
relations: event-people (e.g., trial–judge), event-
thing, location-living, location-thing, people-
instrument, instrument-people, instrument-thing.

In the presentation of our results we group syn-
onyms with antonyms and cohyponyms from SPP
as paradigmatic relations, and the entire GEK
dataset with backward and forward phrasal asso-
ciates from SPP as syntagmatic relations.

3.2 Evaluated Parameters

DSMs evaluated in this paper belong to the class of
bag-of-words models. We defined a large vocab-
ulary of target words (27522 lemma types) con-
taining all the items from the evaluated datasets
as well as items from other state-of-the-art evalu-
ation studies (Baroni and Lenci, 2010; Baroni and
Lenci, 2011). Context words were filtered by part-
of-speech (nouns, verbs, adjectives, and adverbs).
Distributional models were built using the UCS
toolkit3 and the wordspace package for R4. The
following parameters have been evaluated:
• Source corpus (abbreviated as corpus in plots

1-4): We compiled DSMs from three corpora
often used in DSM evaluation studies and that

3http://www.collocations.de/software.html
4http://r-forge.r-project.org/projects/wordspace/
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differ in both size and quality: British National
Corpus5, ukWaC, and WaCkypedia EN6.

• Size of the context window (win.size): As
this parameter quantifies the amount of shared
context involved in the computation of similar-
ity, we expect it to be crucial in determining
whether syntagmatic or paradigmatic relations
are captured. We therefore use a finer granu-
larity for window size than Lapesa and Evert
(2013): 1, 2, 4, 8 and 16 words.

• Directionality of the context window
(win.direction): When collecting co-occurrence
information from the source corpora, we use ei-
ther a directed window (i.e., separate frequency
counts for co-occurrences of a context term
to the left and to the right of the target term)
or an undirected window (i.e., no distinction
between left and right context when collecting
co-occurrence counts).

• Context selection: From the full co-occurrence
matrix collected as described above, we select
dimensions (columns) according to the follow-
ing parameters:

– Criterion for context selection (criterion):
We select the top-ranked dimensions either
according to marginal frequency (i.e., we use
the most frequent words as context terms)
or number of nonzero co-occurrence counts
(i.e., we use the context terms that co-occur
with the highest number of targets).

– Number of context dimensions (con-
text.dim): We select the top-ranked 5000,
10000, 20000, 50000 or 100000 dimensions,
according to the criterion above.

• Feature scoring (score): Co-occurrence counts
are weighted using one of the following associa-
tion measures: frequency, Dice coefficient, sim-
ple log-likelihood, Mutual Information, t-score,
z-score or tf.idf.7

• Feature transformation (transformation): A
transformation function may be applied to re-
duce the skewness of feature scores. Possible
transformations are: none, square root, logarith-
mic and sigmoid.

5http://www.natcorp.ox.ac.uk/
6Both ukWaC and WaCkypedia EN are available at:

wacky.sslmit.unibo.it/doku.php?id=corpora
7See Evert (2008) for a description of these measures and

details on the calculation of association scores. Note that
we compute “sparse” versions of the association measures
(where negative values are clamped to zero) in order to pre-
serve the sparseness of the co-occurrence matrix.

• Distance metric (metric): We apply cosine dis-
tance (i.e., angle between vectors) or Manhattan
distance.

• Dimensionality reduction: We apply singular
value decomposition in order to project distri-
butional vectors to a relatively small number of
latent dimensions and compare the results to the
unreduced runs8. For the SVD-based models,
there are two additional parameters:

– Number of latent dimensions (red.dim):
Whether to use the first 100, 300, 500, 700
or 900 latent dimensions from the SVD anal-
ysis.

– Number of skipped dimensions (dim.skip):
When selecting latent dimensions, we option-
ally skip the first 50 or 100 SVD compo-
nents. This parameter was inspired by Bul-
linaria and Levy (2012), who found that dis-
carding the initial components of the reduced
matrix, i.e. the SVD components with highest
variance, improves evaluation results.

• Index of distributional relatedness (rel.index):
We propose two alternative ways of quantify-
ing the degree of relatedness between two words
a and b represented in a DSM. The first op-
tion (and standard in distributional modeling)
is to compute the distance (cosine or Manhat-
tan) between the vectors of a and b. The sec-
ond option, proposed in this work, is based on
neighbor rank, i.e. we determine the rank of
the target among the nearest neighbors of each
prime. We expect that the target will occur in a
higher position among the neighbors of the con-
sistent prime than among those of the inconsis-
tent prime. Since this corresponds to a lower
numeric rank value for the consistent prime, we
can treat neighbor rank as a measure of dissim-
ilarity. Neighbor rank is particularly interesting
as an index of relatedness because, unlike a dis-
tance metric, it can capture asymmetry effects9.

4 Methodology

In our evaluation study, we tested all the possible
combinations of the parameters listed in section

8For efficiency reasons, we use randomized SVD (Halko
et al., 2009) with a sufficiently high oversampling factor to
ensure a good approximation.

9Note that our use of neighbor rank is fully consistent with
the experimental design (primes are shown before targets).
See Lapesa and Evert (2013) for an analysis of the perfor-
mance of neighbor rank as a predictor of priming and discus-
sion of the implications of using rank in cognitive modeling.
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3.2, resulting in a total of 537600 different model
runs (33600 in the setting without dimensionality
reduction, 504000 in the dimensionality-reduced
setting). The models were generated and evaluated
on a large HPC cluster within approx. 4 weeks.

Our methodology for model selection follows
the proposal of Lapesa and Evert (2013), who con-
sider DSM parameters as predictors of model per-
formance. We analyze the influence of individual
parameters and their interactions using general lin-
ear models with performance (percent accuracy)
as a dependent variable and the model parame-
ters as independent variables, including all two-
way interactions. Analysis of variance – which
is straightforward for our full factorial design – is
used to quantify the importance of each parameter
or interaction. Robust optimal parameter settings
are identified with the help of effect displays (Fox,
2003), which marginalize over all the parameters
not shown in a plot and thus allow an intuitive in-
terpretation of the effect sizes of categorical vari-
ables irrespective of the dummy coding scheme.

For each dataset, a separate linear model was
fitted. The results are reported and compared in
section 5. Table 1 lists the global goodness-of-fit
(R2) on each dataset, for the reduced and unre-
duced runs. Despite some variability across re-
lations and between unreduced and reduced runs,
the R2 values are always high (≥ 75%), showing
that the linear model explains a large part of the
observed performance differences. It is therefore
justified to base our analysis on the linear models.

Relation Dataset Unreduced Reduced
Syntagmatic GEK 93% 87%
Syntagmatic FPA 90% 79%
Syntagmatic BPA 88% 77%
Paradigmatic SYN 92% 85%
Paradigmatic COH 89% 75%
Paradigmatic ANT 89% 76%

Table 1: Evaluation, Global R2

5 Results

In this section, we present the results of our study.
We begin by looking at the distribution of accu-
racy for different datasets, and by comparing re-
duced and unreduced experimental runs in terms
of minimum, maximum and mean performance.

The results displayed in table 2 show that di-
mensionality reduction with SVD improves the
performance of the models for all datasets but
GEK. We conclude that the information lost by ap-
plying SVD reduction (namely, meaningful distri-
butional features, which are replaced by the gener-

Relation Dataset Unreduced Reduced
Min Max Mean Min Max Mean

Syntagmatic GEK 54.8 98.4 86.6 48.0 97.0 80.8
Syntagmatic FPA 41.0 98.0 82.3 43.0 98.6 82.1
Syntagmatic BPA 49.4 97.7 83.8 41.6 98.9 83.9
Paradigmatic SYN 54.8 98.4 86.6 57.3 99.0 88.2
Paradigmatic COH 49.0 100.0 92.6 54.3 100.0 94.0
Paradigmatic ANT 69.6 100.0 94.2 57.8 100.0 94.3

Table 2: Distribution of Accuracy

alization encoded in the reduced dimensions) is ir-
relevant to other tasks, but crucial for modeling the
relations in the GEK dataset. This interpretation is
consistent with the detrimental effect of SVD in
tasks involving vector composition reported in the
literature (Baroni and Zamparelli, 2010).

5.1 Importance of Parameters

To obtain further insights into DSM performance
we explore the effect of specific model parameters,
comparing syntagmatic vs. paradigmatic relations
and reduced vs. unreduced runs.

In order to establish a ranking of the parameters
according to their importance wrt. model perfor-
mance, we use a feature ablation approach. The
ablation value for a given parameter is the propor-
tion of variance (R2) explained by this parameter
together with all its interactions, corresponding to
the reduction in adjusted R2 of the linear model fit
if the parameter were left out. In other words, it
allows us to find out whether a certain parameter
has a substantial effect on model performance (on
top of all other parameters). Figures 1 to 4 display
the feature ablation values of all the evaluated pa-
rameters in the unreduced and reduced setting, for
paradigmatic and syntagmatic relations. Parame-
ters are ranked according to their average feature
ablation values in each setting.

Two parameters, namely feature score and fea-
ture transformation, are consistently crucial in
determining DSM performance, both in reduced
and unreduced runs, and for both paradigmatic
and syntagmatic relations. In the next section we
will show that it is possible to identify optimal (or
nearly optimal) values for those parameters that
are constant across relations.

A comparison of figures 1 and 2 with figures 3
and 4 allows us to identify parameters that lose
or gain explanatory power when SVD comes into
play. Feature ablation shows that the effect of the
index of distributional relatedness is substan-
tially smaller in the SVD-reduced runs, but this pa-
rameter still plays an important role. On the other
hand, two parameters gain explanatory power in a
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SVD-reduced setting: the size of the context win-
dow and the source corpus. Optimal values are
discussed in section 5.2.

Three parameters consistently have little or no
explanatory power: directionality of the con-
text window, criterion for context selection and
number of context dimensions.

We conclude this section by comparing rela-
tions within groups. Within paradigmatic rela-
tions, we note a significant drop in explanatory
power for the relatedness index when it comes to
antonyms. Within syntagmatic relations, the size
of the context window appears to be more crucial
on the GEK dataset than it is for FPA and BPA:
in the next section, the analysis of the best choices
for this parameter will provide a clue for the inter-
pretation of this opposition.

5.2 Best Parameter Values
In this section, we identify the best parameter val-
ues for syntagmatic and paradigmatic relations by
inspecting partial effects plots10. Our discussion
starts from the parameters that contribute to the
leading topic of this paper, namely the comparison
between syntagmatic and paradigmatic relations:

10The partial effect plots in figures 5 to 12 display param-
eter values on the x-axis and their effect size in terms of pre-
dicted accuracy on the y-axis (see section 4 for more details
concerning the calculation of effect size).

window size, parameters related to dimensionality
reduction, and relatedness index.

As already anticipated in the feature ablation
analysis, the size of the context window plays
a crucial role in contrasting syntagmatic and
paradigmatic relations, as well as different rela-
tions within those general groups. The plots in fig-
ures 5 and 6 display its partial effect for paradig-
matic relations in the unreduced and reduced set-
tings, respectively. The plots in figures 7 and 8
display its partial effect for syntagmatic relations.
When no dimensionality reduction is involved, a
very small context window (i.e., one word) is suffi-
cient for all paradigmatic relations, and DSM per-
formance decreases as soon as we enlarge the con-
text window. The picture changes when apply-
ing dimensionality reduction: a 4-word window
is a robust choice for all paradigmatic relations
(although ANT show a further increase in perfor-
mance with an 8-word window), even in the SYN
task that is traditionally associated with very small
windows of 1 or 2 words (cf. Sahlgren (2006)).

A significant interaction between window size
and number of skipped dimensions (not shown for
reasons of space) sheds further light on this matter.
Without skipping SVD dimensions, the reduced
models achieve optimal performance for a 2-word
window and degrade more (COH) or less (ANT)
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quickly for larger windows. With 50 or 100 di-
mensions skipped, performance improves up to a
4- or 8-word window. Our interpretation is that the
first SVD dimensions capture general domain and
topic information dominating the co-occurrence
data; removing these dimensions reveals paradig-
matic semantic relations even for larger windows.
For syntagmatic relations without dimensionality
reduction, a larger context window of 4 words is
needed for FPA and BPA; a further increase of the
window is detrimental. For the GEK dataset, per-
formance peaks at 8 words, and decreases only
minimally for even larger windows. Again, di-
mensionality reduction improves performance for
large co-occurrence windows. For FPA and BPA,
the optimum seems to be achieved with a win-
dow of 4–8 words; performance on GEK contin-
ues to increase up to 16 words, the largest win-
dow size considered in our experiments. Such pat-
terns reflect differences in the nature of the se-
mantic relations involved: smaller windows pro-
vide better contextual representations for paradig-
matic relations while larger windows are needed to
capture syntagmatic relations with bag-of-words
DSMs (because co-occurring words then share a
large portion of their context windows). Interme-
diate window sizes are sufficient for phrasal col-
locates (which are usually adjacent), while event-
based relatedness (GEK) requires larger windows.
Returning briefly to the slight preference shown
by ANT for a larger window, we notice that ANT

seems to be more similar to the syntagmatic rela-
tions than SYN and COH. This is in line with the
observations of Justeson and Katz (1992) concern-
ing the tendency of antonyms to co-occur (e.g., in
coordinations such as short and long). Like syn-
onyms, antonyms are interchangeable in absentia;
but they also enter into syntagmatic patterns that
are uncommon for synonyms.

We now focus on the parameters related to di-
mensionality reduction, namely the number of la-
tent dimensions (figures 9 and 10) and the num-
ber of skipped dimensions (figures 11 and 12).
These parameters represent an extension of the
experiments conducted on the GEK dataset by
Lapesa and Evert (2013). They have already been
applied by Bullinaria and Levy (2012) to a differ-
ent set of tasks, including the TOEFL multiple-
choice synonymy task. In particular, Bullinaria
and Levy found that discarding the initial SVD di-
mensions (with highest variance) leads to substan-
tial improvements, especially in the TOEFL task.
In our experiments, we found no difference be-
tween syntagmatic and paradigmatic relations wrt.
the number of latent dimensions: the more, the
better in both cases (900 dimensions). The number
of skipped dimensions, however, shows some vari-
ability across the different relations. The results
for SYN are in agreement with the findings of Bul-
linaria and Levy (2012) on TOEFL: skipping 50
or 100 initial dimensions improves performance.
Skipping dimensions makes minimal difference
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Figure 12: Skipped dimensions, syntagmatic

for COH (best choice is 50 dimensions), while the
full range of reduced dimensions is necessary for
ANT. Within syntagmatic relations, the full range
of latent dimensions ensures good performance on
phrasal associates (even if skipping 50 dimensions
is not detrimental for BPA). GEK shows a pattern
similar to SYN, with 50 skipped dimensions lead-
ing to a considerable improvement.

We now inspect the best values for the related-
ness index. As shown in figure 13 for the unre-
duced runs and in figure 14 for the reduced runs,
neighbor rank is consistently better than distance
on all datasets. This is not surprising because, as
discussed in section 3.2, our use of neighbor rank
captures asymmetry and mirrors the experimental
setting, in which targets are shown after primes.
A further observation may be made relating to the
degree of asymmetry of different relations. The
unreduced setting in particular shows that syntag-
matic relations are subject to stronger asymme-
try effects than the paradigmatic ones, presumably
due to the directional nature of the relations in-
volved (phrasal associates and syntactic colloca-
tions). Among paradigmatic relations, antonyms
appear to be the least asymmetric ones (because
using neighbor rank instead of distance makes a
comparatively small difference).

We conclude by briefly summarizing the opti-
mal choices for the remaining parameters. The
corresponding partial effects plots are not shown
because of space constraints.

A very strong interaction between score and
transformation characterizes all four settings
(paradigmatic or syntagmatic datasets, reduced or
unreduced experimental runs). Association mea-
sures outperform raw co-occurrence frequency.
Measures based on significance tests (simple-ll,
t-score, z-score) are better than Dice, and to a
lesser extent, MI. Simple-ll is the best choice in
combination with a logarithmic transformation for
paradigmatic relations, z-score appears to be the
best measure for syntagmatic relations in combi-
nation with a square root transformation. The dif-
ference is small, however, and simple-ll with log
transformation works well across all datasets. On-
going experiments with standard tasks show a sim-
ilar pattern, suggesting that this combination of
score and transformation parameters is appropri-
ate for DSMs, regardless of the task involved.

The optimal distance metric is the cosine
distance, consistently outperforming Manhattan.
Concerning source corpus, BNC consistently
yields the worst results, while WaCkypedia and
ukWaC appear to be almost equivalent in the unre-
duced runs. The trade-off between quality and
quantity appears to be strongly biased towards
sheer corpus size in the case of distributional mod-
els. For syntagmatic relations and SVD-reduced
models, ukWaC is clearly the best choice. This
suggests that syntagmatic relations are better cap-
tured by features from a larger lexical inventory,
combined with the abstraction performed by SVD.
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Figure 14: Relatedness index, reduced

Concerning minimally explanatory parameters,
inspection of partial effect plots supported the
choice of “unmarked” default values for direc-
tionality of the context window (i.e., undirected)
and criterion for context selection (i.e., fre-
quency), as well as an intermediate number of
context dimensions (i.e., 50000 dimensions).

5.3 Best Settings

We conclude by comparing the performance
achieved by our robust choice of optimal param-
eter values (“best setting”) from section 5.2 with
the performance of the best model for each dataset.
For space constraints, the analysis of best settings
focuses on the reduced experimental runs. Our
best settings, shown in table 3, perform fairly well
on the respective datasets11.
dataset corpus win score transf r.dim d.sk acc best
GEK ukwac 16 s-ll log 900 50 96.0 97.0
FPA ukwac 8 z-sc root 900 0 93.0 98.6
BPA ukwac 8 z-sc root 900 0 95.5 98.9
SYN ukwac 4 s-ll log 900 50 96.3 99.0
COH ukwac 4 s-ll log 900 50 98.7 100
ANT wacky 8 s-ll log 900 0 100 100

Table 3: Best settings: datasets, parameter values,
accuracy (acc), accuracy of the best model (best)

best setting corpus win score transf r.dim d.sk
Syntagmatic ukwac 8 z-sc root 900 0
Paradigmatic ukwac 4 s-ll log 900 50
General ukwac 4 s-ll log 900 0

Table 4: General best settings: parameter values

Dataset Best Synt. Best Para. General
GEK 92.5 94.8 91.3
FPA 93.0 90.2 91.7
BPA 95.5 97.7 95.5
SYN 94.4 96.3 96.3
COH 99.3 98.7 98.7
ANT 99.2 99.2 99.2

Table 5: General best settings: accuracy

11Abbreviations in tables 3 and 4: win = window size;
transf = transformation; z-sc = z-score; s-ll = simple-ll; r.dim
= number of latent dimensions; d.sk = number of skipped di-
mensions. Parameters with fixed values for all datasets: num-
ber of context dimensions = 50k; direction = undirected; cri-
terion = frequency; metric = cosine; relatedness index = rank.

As a next step, we identified parameter combi-
nations that work well for all types of syntagmatic
and paradigmatic relations, as well as an even
more general setting that is suitable for paradig-
matic and syntagmatic relations alike. Best set-
tings are shown in table 4, their performance on
each dataset is reported in table 5. General models
achieve fairly good performance on all relations.

6 Conclusion

We presented a large-scale evaluation study of
bag-of-words DSMs on a classification task de-
rived from priming experiments. The leading
theme of our study is a comparison between syn-
tagmatic and paradigmatic relations in terms of
the aspects of distributional similarity that char-
acterize them. Our results show that second-order
DSMs are capable of capturing both syntagmatic
and paradigmatic relations, if parameters are prop-
erly tuned. Size of the co-occurrence window as
well as parameters connected to dimensionality re-
duction play a key role in adapting DSMs to par-
ticular relations. Even if we do not address the
more specific task of distinguishing between rela-
tions (e.g., synonyms vs. antonyms; see Scheible
et al. (2013) and references therein), we believe
that such applications may benefit from our de-
tailed analyses on the effects of DSM parameters.

Ongoing and future work is concerned with the
expansion of the evaluation setting to other classes
of models (first-order models, dependency-based
second-order models) and parameters (e.g., di-
mensionality reduction with Random Indexing).
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