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Abstract 

We describe our system for the DDIExtraction-2013 
shared task of classifying Drug-Drug interactions 
(DDIs) given labeled drug mentions. The challenge 
called for a five-way classification of all drug pairs in 
each sentence: a drug pair is either non-interacting, or 
interacting as one of four types. Our approach begins 
with the use of a two-stage weighted SVM classifier 
to handle the highly unbalanced class distribution: the 
first stage for a binary classification of drug pairs as 
interacting or non-interacting, and the second stage for 
further classification of interacting pairs from the first 
stage into one of the four interacting types. Our SVM 
features exploit stemmed words, lemmas, bigrams, 
part of speech tags, verb lists, and similarity measures, 
among others. For each stage, we also developed a set 
of post-processing rules based on observations in the 
training data. Our best system achieved 0.472 F-
measure.  

1 Introduction 

Potential drug-drug interactions (DDIs), defined 
as the co-prescription of two drugs that are 
known to interact, are a significant source of pre-
ventable drug-related harm (i.e., adverse drug 
events, or ADEs) (Nebeker et al., 2004). Gurwitz 
et al, in their cohort study of ADEs among older 
Americans receiving ambulatory care, found that 
13.3% of preventable errors leading to an ADE 
involved the co-prescription of drugs for which a 
“...well established, clinically important interac-
tion” was known (Gurwitz et al., 2003). Nearly 
7% (23/338) of the ADEs experienced by resi-
dents of two academic nursing homes over a 
nine-month period were attributable to DDIs 
(Gurwitz et al., 2005). Sixteen cohort and case-
control studies reported an elevated risk of hospi-

talization in patients who were exposed to DDIs 
(Hines et al., 2011). 
Failure to properly manage a DDI is a medical 
error, and the Institute of Medicine has noted that 
a lack of drug knowledge is one of the most fre-
quent proximal causes of such errors (Committee 
on Identifying and Preventing Medication Errors, 
2007). Indeed, health care providers often have 
inadequate knowledge of what drug interactions 
can occur, of patient specific factors that can in-
crease the risk of harm from an interaction, and 
how to properly manage an interaction when pa-
tient exposure cannot be avoided (Chen et al., 
2005; Hines et al., 2012). 

Unfortunately, there is no single complete and 
authoritative source of DDI knowledge (Hines et 
al., 2012). Rather, there are multiple sources, 
each tasked with extracting, evaluating, and stay-
ing up-to-date with pertinent DDIs reported in 
the literature, and drug product labeling (Boyce 
et al., 2012). The dynamic nature of drug 
knowledge, combined with the enormity of the 
biomedical literature, makes this task extremely 
challenging. Hence, natural language processing 
methods for identifying and extracting DDIs are 
receiving increased attention.   

In 2011, the first shared task challenge for DDI 
extraction, DDIExtraction-2011 (Segura-Bedmar 
et al., 2011), invited participants to develop au-
tomatic methods to extract DDIs. The task fo-
cused on the identification of all possible pairs of 
interacting drugs, without specifying anything 
further about the interactions. By contrast, the 
DDIExtraction-2013 (Segura-Bedmar et al., 
2013) shared task emphasized the importance of 
recognizing what is being asserted about the in-
teraction. Accordingly, the challenge called for a 

667



five-way classification of sentences for each 
drug-pair: 
• Advice: the sentence notes a recommendation 

or advice related to the concomitant use of 
the two drugs (e.g., “… UROXATRAL 
should NOT be used in combination with 
other alpha-blockers.”); 

• Effect: the sentence states the effect of the 
drug interaction, including pharmacodynamic 
effect or mechanism of interaction (e.g., 
“Quinolones may enhance the effects of the 
oral anticoagulant, warfarin, …”); 

• Mechanism: the sentence describes a phar-
macokinetic mechanism (e.g., “Grepafloxa-
cin is a competitive inhibitor of the 
metabolism of theophylline.”). 

• Int: the sentence mentions a drug interaction 
but doesn’t provide any additional infor-
mation (e.g., “The interaction of omeprazole 
and ketoconazole has been established.”). 

• None: the sentence does not show an interac-
tion between the two drugs; 

To focus on, and separately evaluate, different 
aspects of the problem, the 2013 shared task was 
divided into two subtasks. One task focused on 
the recognition and classification of drug names, 
while the other focused on the identification and 
classification of DDIs, with the drug names pro-
vided from the gold standard. In this paper, we 
describe our approach for handling the second 
task, namely, DDI identification and classifica-
tion of all possible pairs of drugs in the provided 
corpus. Our approach combined machine-
learning methods with the use of rules for post-
processing. A key feature of our machine-
learning approach is that it is specifically de-
signed to handle the highly unbalanced class dis-
tribution via the use of a two-stage weighted 
SVM classifier. In addition to a variety of fea-
tures exploited for the classifier, we also devel-
oped a set of post-processing rules, with a 
different set of rules applied after each stage of 
SVM classification. Finally, our approach is also 
aimed towards exploring the efficacy of methods 
that do not need to rely on syntactic-parse based 
features. 

The paper is organized as follows. In the next 
section, we describe the training and test data set 

used in the challenge. In section 3, we describe 
our method, the classifiers used at each stage, 
their features, and post processing. In section 4, 
we present the evaluation and results. We con-
clude in Section 5 with discussion and future 
work.  

2 Data 

The DDIExtraction-2013 challenge provided a 
DDI corpus for development, containing 142 
Medline abstracts on the subject of drug-drug 
interactions, and 572 documents describing drug-
drug interactions from the DrugBank database. 
The corpus includes 6976 sentences that were 
annotated with four types of pharmacological 
entities and four types of DDIs. The DDIs types 
are: advice, effect, mechanism, and int.1 Table 1 
shows the number of instances for each type. Ex-
amples can be seen in Section 1. The test set in-
cludes 33 Medline abstracts and 158 DrugBank 
documents containing 1299 sentences and 5519 
drug pairs. 

Table 1: Number of instances in each class 

3 Methods 

Classification of each drug pair in a sentence in-
volved distinguishing between 5 classes, advice, 
effect, mechanism, int and none. As described in 
Section 2 (see Table 1), a major challenge in this 
task is posed by the unbalanced distribution of 
the classes. First, considering just the positive vs. 
negative classes, just 16.9% (4037/23772) of 
drug pairs are in the positive class, which include 
interacting drug pairs (labeled as advice, effect, 
mechanism and int). Furthermore, the four types 

                                                
1 http://www.cs.york.ac.uk/semeval-
2013/task9/data/uploads/task-9.2-ddi-extraction.pdf 

Type Number 

Positive Advice 827 

Effect 1700 

Mechanism 1322 

Int 188 

Negative None (non-interacting drugs) 23772 

Total 27809 
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within the positive class are also unbalanced, 
with the int type constituting only 4.6% 
(188/4037) of the instances. A classifier trained 
on this data will, therefore, be biased towards the 
majority class(es). We employed a two-stage 
classification approach to cope with this problem, 
as described below. 

3.1 Two-stage classification 

Figure 1 shows the architecture of the system. In 
the first stage, we trained a binary classifier to 
classify drug pairs into positive and negative 
classes. Then, in the second stage, we considered 
only instances that were classified as positive by 
the first classifier, and classified them into ad-
vice, effect, mechanism, and int classes, using a 
multi-class classifier.  A two-stage classifier of-
fers a distinct advantage over a one-stage classi-
fier for the DDI data set, which is highly skewed 
towards one class, but particularly because this 
majority class is also clearly semantically distinct 
from the other positive classes (see Table 1). 
By reframing part of this problem as a binary 
classification task, we can exploit binary clas-
sification techniques and allow the classifier 
to be particularly attentive to features distin-
guishing positive and negative drug pairs, 
while at the same time avoiding the bias 
against each of the non-majority classes. Our 
experiments with the training set confirm this 
idea. 

Despite the above advantage of a two-stage 
SVM, however, the unbalanced class problem 
still remains, especially for training at the 
first stage, where we have 20854 negative 
instances and 4026 positives instances. In the 
second stage, the data is somewhat unbal-
anced as well, with   20.5% as advice, 42.2% 
as effect, 32.6% as mechanism, and only 4.7% 
as int. To handle this problem further, we ex-
plored different approaches and algorithms, 
including SMOTE (Chawla et al. 2002) and 
other resampling algorithms. Our best results 
over the training data were obtained with 
Support Vector Machine (SVM) with differ-
ent class weights. We used LibSVM (Chang 
and Lin, 2011) and set class weights for each 
stage using results of cross-validation over 
the training data (see Table 3 for class 

weights).  

As we wanted to pass the positively classified 
instances from the first stage to the second stage 
classifier, we favored the positive class in the 
first stage. This resulted in a relatively high num-
ber of false positives for the positive instances, 
which we attempted to reduce with a set of post-
processing rules before sending them to the se-
cond stage classifier. A different set of post-
processing rules were also developed to apply on 
the output of the second stage classifier. 

3.2 Pre-processing 

Before classification, all sentence instances in the 
training and test set were pre-processed for the 
following:  
• All letters were changed to lower case. 
• All drug names were normalized by replacing 

them with one of two strings; one used for 
drug mentions that were candidates for clas-

One/more instances 

Pre-Processing 
POS tagger 

Stop Words list Lemmatizer 

Stemmer 

Sentence with more 
than two drugs 

Final Classification 

Post-Processing 

Post-Processing 

Instances classi-
fied as positive 

Instances classi-
fied as negative 

First Stage Binary Classifier 
(Weighted-SVM) 

Second Stage Multi-Class 
Classifier (Weighted-SVM) 

Classified as 
positive 

Classified as 
negative 

Figure 1: The Architecture of the system 

669



sification in the instance, and the other used 
for all other drug mentions.  

• All numbers were normalized by replacing 
them with the same string. 

• Stop words and punctuation were removed. 
We used different stop word lists for differ-
ent systems that were submitted to the chal-
lenge. 

• Part of speech (POS) tags were obtained with 
the Stanford NLP tool (Toutanova et al, 
2003). 

• Words were stemmed with the Porter Stem-
mer (Porter, 1980). 

• Words were lemmatized with the dragon tool 
(Zhou et al, 2007). 

• Synsets for words were obtained using 
WordNet (Fellbaum, 1998). 

3.3 Features 

Since each sentence can have more than two drug 
mentions, we generated an instance of the sen-
tence for each drug pair. We used different com-
binations of various features for the three 
different systems submitted to the challenge 
(Section 3.4.3). The following describes all the 
features separated into two categories: features 
per sentence and features per drug-pair instances.  
 
Features per sentence: These are sentence-level 
features that have the same values across all in-
stances of a sentence. 
1- Words: This is a binary feature for all words 

that appeared more than once in the corpus, 
indicating the presence or absence of each 
such word in the sentence. We considered 
stemmed words as well as lemmatized words.  

2- Word bigrams: This is a binary feature for all 
word bigrams that appeared more than once 
in the corpus, indicating the presence or ab-
sence of each such bigram in the sentence 

3- Number of words: This feature represents the 
total number of words in the sentence 

4- Number of drug mentions: This feature repre-
sents the total number of drug mentions in 
the sentence.  

5- Cosine similarity between centroid vector of 
each class and the instance: Inspired by the 
vector space Information Retrieval approach, 
we added new features to represent the co-

sine similarity between a sentence and the 
centroid of normalized vectors for sentences 
assigned the class X. Cosine similarity is cal-
culated based on modified tf*idf. We com-
puted modified tf*idf for a word w in class 
C, based on the following formula: 

 
(TF * IDF)w,C = log(count(w,C)+1)*
log(total # Inst / (# inst _ contains_w+1))

 

 
TF is the logarithm of the number of times the 
word occurs in all sentences assigned to the class. 
IDF is 1.0 divided by the logarithm of number of 
instances in the class divided by the number of 
times the word occurs across all classes. To cal-
culate the centroid vector for class C, a vector is 
created for each sentence in class C by giving 
each word in the sentence a modified TF*IDF 
weight. The centroid vector for class C is the 
mean of all vectors of sentences in class C. The 
Cosine similarity between a given instance and 
the centroid vector of each class is then used a 
feature. 
 
Features per instance (for each drug-pair): In 
contrast to sentence-level features, these features 
may have different values across the different 
drug-pair instances. In each instance, we distin-
guished the two main drugs of interest for the 
instance from all other additional drugs men-
tioned in the instance. 
1- Number of words between two main drugs: 

This represents the total number of words be-
tween the two main drugs.  

2- Number of drugs between two main drugs: 
This represents the total number of additional 
drugs appearing between the two main drugs. 

3- Number of verbs: We used the number of 
verbs in the instance as a feature, but relative 
to their sentential position. In particular, we 
split each instance into three sections: (i) be-
fore the first main drug, (ii) between the two 
main drugs, and (iii) after the second main 
drug. Then, we counted the number of verbs 
in each section, and used them as three dif-
ferent features. 

4- Number of verbs using class-specific verb 
lists: For each class, we extracted two lists of 
verbs. The first list contains verbs that ap-
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peared in just that class but not in the others. 
Thus, the set of verbs extracted for each class 
are unique and different from the verbs asso-
ciated with other classes. The second list in-
cludes all verbs that appeared in that class 
and their synonyms, extracted from Word-
Net. Then, for each of the three sentence sec-
tions, as described above, we created two 
features to represent the number of verbs 
from each of these lists that appeared in the 
section. (An alternative way to represent this 
feature would be to weight the verbs accord-
ing to their relative frequencies in the differ-
ent classes.) 

5- POS of words between two main drugs: This 
is a binary feature for word POS tags ob-
tained from POS tagging, and indicates the 
presence or absence of each POS between the 
two main drugs. 

3.4 Post processing 

As described in Section 3.1, we developed a set 
of post-processing rules for each stage of the 
classifier. Here, we describe these rules, devel-
oped on the basis of observations in the training 
data.  

3.4.1 Post processing after the first stage 

Post-processing rules for the first stage were de-
signed to reduce the number of false positives for 
the positive class, since the weight assignment in 
this stage favors this class. We provide examples 
for each rule: 
 
• The instance is classified as negative if both 

drug mentions have the same name, since a 
drug cannot interact with itself.  
 
“In controlled clinical trials of AUGMENTIN XR, 
22 patients received concomitant allopurinol and 
AUGMENTIN XR.” 
 

• The instance is classified as negative if one 
of the drugs is a plural form of the other one, 
since, as above, they refer to the same drug.   

 
“Oral Anticoagulants: Interaction studies with 
warfarin failed to identify any clinically im-
portant effect on the serum concentrations of the 
anticoagulant or on its anticoagulant effect.” 

 
• The instance is classified as negative if one 

of the drug mentions refers to a drug class 
name of the other, since we don’t expect a 
drug to interact with its class. Drug class 
names were obtained from a classification 
provided by the FDA.2 In the example below, 
“MAOI” is the drug class name for “isocar-
boxazid”.  

 
“You cannot take mazindol if you have taken a 
monoamine oxidase inhibitor (MAOI) such as 
isocarboxazid (Marplan), tranylcypromine (Par-
nate), or phenelzine (Nardil) in the last 14 days.” 
 

• The instance is classified as negative if “,” or 
“, and” appears between the two main drug 
mentions, and is accompanied by an addi-
tional drug mention. This rules identifies 
contexts where drugs are mentioned as a set, 
in interaction with a different drug. The fol-
lowing sentences show “glyburide”, “tolbut-
amide” and “glipzide” as part of a set of 
drugs in interaction with the additional drug 
“DIFLUCAN”.  
 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.”  
 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.” 
 

• The sentence is classified as negative if “,” 
and additional drugs appear between the 
main drug mentions. Like the previous rule, 
this again recognizes drugs mentioned as a 
set but identifies non-adjacent mentions. For 
example, the following sentence doesn’t ex-
press any interaction between “tolbutamide” 
and “glipizide”, and the rule recognizes them 
as part of a set mention even though they are 
non-adjacent. 

 
“DIFLUCAN reduces the metabolism of tolbut-
amide, glyburide, and glipizide and increases the 
plasma concentration of these agents.” 

 
                                                
2http://www.fda.gov/ForIndustry/DataStandards/StructuredP
roductLabeling/ucm162549.htm 
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• The instance is classified as negative if “or” 
appears between the two main drug mentions 
and the sentence contains additional drug 
mentions. The presence of additional drug 
mentions in the sentence is required here 
since such conjoined pairs can interact with 
each other when they occur alone.  

 
“Concurrent ingestion of antacid (20 mL of ant-
acid containing aluminum hydroxide, magnesium 
hydroxide, and simethicone) did not significantly 
affect the exposure of oxybutynin or desethyloxy-
butynin.” 

3.4.2 Post processing after the second stage 

Post-processing after the second classifier identi-
fies sentences like the following: 
 
“Coadministration of alosetron and strong CYP3A4 
inhibitors, such as clarithromycin, teli thromycin, 
protease inhibitors, voriconazole, and itraconazole 
has not been evaluated but should be undertaken with 
caution because of similar potential drug interac-
tions.” 
 
Examples like these illustrate that if drugs are 
mentioned as a set, then all drugs in the set must 
have the same interaction type with a drug men-
tioned outside the set. Thus, in the example, the 
interaction of each of “clarithromycin”, “teli-
thromycin”, “protease inhibitors”, “voricona-
zole”, and “itraconazole” with “alosetron” 
should be classified in the same way. We used 
several syntactic and lexical cues to identify set 
mentions of drugs. Then, since the SVM classi-
fier can make different decisions for each such 
pair (e.g., it may assign one label to the interac-
tion of “clarithromycin” with  “alosetron” and 

another label to the interaction of “telithromycin” 
with “alosetron”), we applied uniform labeling 
for the interaction of all such pairs. The majority 
label was used as the common label. Ties were 
not encountered in this data, although a solution 
would have to be devised otherwise. 

An important consideration for this rule is that it 
uses both positively and negatively labeled in-
stances. The former are taken from the result of 
the second stage classifier, and the latter from the 
negative instances of the first stage classifier and 
the negative instances of the first post-processor. 
These varied inputs to the rule are illustrated by 
the three ingoing arrows into the second post-
processor in Figure 1.  

3.4.3 Submitted Systems  
 
We used the Weka (Hall et al. 2009) tool for all 
experiments and submitted three systems (Sys-
tem1, System 2, and System 3 in Table 2) to the 
challenge.  All systems used the same two-stage 
approach and SVM classification (LibSVM), but 
differed in the use of some of the features (Sec-
tion 3.3) and in the weights assignment (Table 3). 
We used linear kernel and the cost (C) was 1.2 
and gamma was 0.5.  In System 1, we used 
stemmed words (instead of lemmatized words) 
and a stop word list of 165 words. In System 2, 
we used stemmed words again, but a different 

System Stage Class Weight 
System 1 First 

Stage  
Positive 6.5 
Negative 1.0 

Second 
Stage 

Advice 800.0 
Effect 600.0 
Int 3200.0 
Mechanism 500.0 

System 2 First 
Stage  

Positive 2.5 
Negative 1.0 

Second 
Stage 

Advice 800.0 
Effect 600.0 
Int 3200.0 
Mechanism 500.0 

System 3 First 
Stage  

Positive 6.5 
Negative 1.0 

Second 
Stage 

Advice 80.0 
Effect 60.0 
Int 320.0 
Mechanism 50.0 

Table 3: Class weight assignments in different systems 

System Metric Drug-
Bank 

Medline All 

System 1 Prec 0.44 0.21 0.43 
Rec 0.49 0.23 0.47 
F 0.46 0.22 0.45 

System 2 Prec 0.49 0.30 0.47 
Rec 0.49 0.41 0.47 
F 0.49 0.35 0.47 

System 3 Prec 0.42 0.26 0.40 
Rec 0.51 0.47 0.50 
F 0.46 0.33 0.44 

Table 2. Results of each system. The three systems are 
described in Section 3.4.3. 
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stop word list of 263 words. Finally, in System 3, 
we used lemmatized words and the same stop 
word list of 263 words as in System 2. Weights 
assignment was different across all systems, as 
shown in Table 3. 

4 Results 

Table 2 shows the evaluation results of our sys-
tem over the test set. Our best results are 
achieved with System 2, in which we used 
stemmed words and our 263 stop word list, in 
addition to the other features described in Section 
3.3. Both the stop word list and the use of 
stemmed vs. lemmatized words can be seen to 
affect the performance. Clearly, a larger stop 
word list is more useful, since both System 2 and 
System 3 show an improvement over System 1. 
On the other hand, the use of lemmas (used in 
System 3) seems to be detrimental, compared 
with stemmed words.  

5 Conclusion and future work 

To the best of our knowledge, this is the first 
study to explore the value of a two-stage SVM 
classification process for performing the complex 
task of identifying sentences describing DDIs, 
and making the important distinction between 
statements providing advice, mechanism and ef-
fect, or declaring a pharmacokinetic and pharma-
codynamic DDI: critical distinctions in the fields 
of pharmacology and pharmacy. We find that the 
use of a two-stage classifier to handle the prob-
lem of an unbalanced class distribution for the 
task of identifying and classifying DDIs is feasi-
ble but requires further development. 

It’s valuable to consider these results within the 
context of previous efforts for extracting DDIs. 
Ten research papers were presented at the 2011 
SemEval Conference (Segura-Bedmar et al, 
2011) which used a smaller DDI corpus (Medline 
abstracts were not included) and a simpler classi-
fication task (Segura-Bedmar et al, 2010). The 
best performing system in this challenge utilized 
an ensemble learning approach (Thomas et al, 
2011) and produced an F-measure of 0.657. The  
second best performing method utilized compo-
site kernels, a method that combines feature-
based and kernel-based methods, and was found 

to perform with an F-measure of 0.64 (Chow-
dhury et al, 2011). Other NLP research has fo-
cused exclusively on extracting pharmacokinetic 
DDIs from either Medline (e.g., Airola et al, 
2008) or drug product labeling (e.g., Boyce et al, 
2012). 

Due to time constraints, we couldn’t test other 
classifiers such as Naïve Bayes, JRip and Ran-
domforest in our approach. Future work will test 
if SVM is the best choice for the first stage bina-
ry classifier. It is possible that libShortText (Yu 
et al, 2013) works better than LibSVM because 
this task is for sentence classification. We also 
plan to explore if Naïve Bayes, JRip, or Random-
forest could work better than SVM for the second 
stage multi-class classifier.  

Since only three systems were permitted to the 
challenge, and since the labeled test data was not 
available until the time of writing, we did not 
have the opportunity to test the impact of all the 
features that we considered, or of the post-
processing rules. This will be explored in future 
work.  

We also plan to explore some variations to our 
approach. For example, we will try to incorporate 
some of the rules, especially those in the first 
post-processor, as features in our system. Finally, 
although we did utilize some semantic infor-
mation from WordNet for this work, we would 
like to explore additional rich features, drawing 
on syntax, semantics and discourse.   
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