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Abstract

This work describes the participation of the
WBI-DDI team on the SemEval 2013 – Task
9.2 DDI extraction challenge. The task con-
sisted of extracting interactions between pairs
of drugs from two collections of documents
(DrugBank and MEDLINE) and their clas-
sification into four subtypes: advise, effect,
mechanism, and int. We developed a two-step
approach in which pairs are initially extracted
using ensembles of up to five different clas-
sifiers and then relabeled to one of the four
categories. Our approach achieved the sec-
ond rank in the DDI competition. For interac-
tion detection we achieved F1 measures rang-
ing from 73 % to almost 76 % depending on
the run. These results are on par or even higher
than the performance estimation on the train-
ing dataset. When considering the four inter-
action subtypes we achieved an F1 measure of
60.9 %.

1 Introduction

A drug-drug interaction (DDI) can be described as
interplay between drugs taken during joint adminis-
tration. DDIs usually lead to an increase or decrease
in drug effects when compared to isolated treatment.
For instance, sildenafil (Viagra) in combination with
nitrates can cause a potentially live-threatening de-
crease in blood pressure (Cheitlin et al., 1999). It is
therefore crucial to consider potential DDI effects
when co-administering drugs to patients. As the
level of medication generally is raising all over the
world, the potential risk of unwanted side effects,

such as DDIs, is constantly increasing (Haider et al.,
2007).

Only a fraction of knowledge about DDIs is
contained in specialized databases such as Drug-
Bank (Knox et al., 2011). These structured knowl-
edge bases are often the primary resource of infor-
mation for researchers. However, the majority of
new DDI findings are still initially reported in scien-
tific publications, which results in the situation that
structured knowledge bases lag behind recently pub-
lished research results. Thus, there is an urgent need
for researchers and database curators to cope with
the fast growth of biomedical literature (Hunter and
Cohen, 2006).

The SemEval 2013 – Task 9.2 (Extraction of
Drug-Drug Interactions from BioMedical Texts)
is a competitive evaluation of methods for ex-
tracting mentions of drug-drug interactions from
texts (Segura-Bedmar et al., 2013). For training,
the organizers provide a corpus annotated with drug-
names and interactions between them. This corpus
is composed of 572 articles collected from Drug-
Bank and 142 PubMed abstracts. Interactions are
binary (always between two drugs) and undirected,
as target and agent roles are not annotated. Fur-
thermore, the two interacting drugs are always men-
tioned within the same sentence. In contrast to
the previous DDI-challenge 2011 (Segura-Bedmar
et al., 2011), four different DDI-subtypes (advise,
effect, mechanism, and int) have been introduced.
Details about the four subclasses can be found in the
task’s annotation guideline.
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Figure 1: Workflow developed for the SemEval 2013
Task 9.2 challenge.

2 Methods

Binary relationship extraction is often tackled as a
pair-wise classification problem, where all

(n
2

)
co-

occurring entities in a sentence are classified as in-
teracting or not. To account for the four different
subtypes of DDIs, the problem definition could be
translated into a multiclass classification problem
between all co-occurring entities.

Contrary to that, we propose a two step strat-
egy: First, we detect general drug-drug interac-
tions regardless of subtype using a multitude of dif-
ferent machine-learning methods. The output of
these methods is aggregated using a majority vot-
ing approach. Second, detected interactions are re-
classified into one of the four possible DDI cate-
gories. The latter is referred to as DDI relabeling
throughout this paper. A detailed view on the pro-
posed workflow is depicted in Figure 1.

2.1 Preprocessing

Sentences have been parsed using Charniak-Johnson
PCFG reranking-parser (Charniak and Johnson,
2005) with a self-trained re-ranking model aug-
mented for biomedical texts (McClosky, 2010). Re-
sulting constituent parse trees have been converted
into dependency graphs using the Stanford con-
verter (De Marneffe et al., 2006). In the last step, we
created an augmented XML using the open source

Corpus Sentences
Pairs

Positive Negative Total

DrugBank 5,675 3,788 22,217 26,005
MEDLINE 1,301 232 1,555 1,787

Table 1: Basic statistics of the DDI training corpus shown
for DrugBank and MEDLINE separately.

framework from Tikk et al. (2010). This XML file
encompasses tokens with respective part-of-speech
tags, constituent parse tree, and dependency parse
tree information. This format has been subsequently
transformed into a related XML format1 used by two
of the utilized classifiers. Properties of the training
corpus are shown for DrugBank and MEDLINE in
Table 1.

2.2 Machine Learning Methods

Tikk et al. (2010) systematically analyzed nine dif-
ferent machine learning approaches for the extrac-
tion of undirected binary protein-protein interac-
tions. This framework has been successfully applied
to other domains, such as the I2B2 relation extrac-
tion challenge (Solt et al., 2010), the previous DDI
extraction challenge (Thomas et al., 2011), and to
the extraction of neuroanatomical connectivity state-
ments (French et al., 2012).

Drug entities are blinded by replacing the entity
name with a generic string to ensure the generality
of the approach. Without entity blinding drug names
are incorporated as features, which clearly affects
generalization capabilities of a classifier on unseen
entity mentions (Pyysalo et al., 2008).

We decided to use the following methods
provided by the framework: All-paths graph
(APG) (Airola et al., 2008), shallow lin-
guistic (SL) (Giuliano et al., 2006), subtree
(ST) (Vishwanathan and Smola, 2002), subset tree
(SST) (Collins and Duffy, 2001), and spectrum tree
(SpT) (Kuboyama et al., 2007) method. The SL
method uses only shallow linguistic features, i.e.,
token, stem, part-of-speech tag and morphologic
properties of the surrounding words. APG builds
a classifier using surface features and a weighting

1https://github.com/jbjorne/TEES/wiki/
Interaction-XML
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scheme for dependency parse tree features. The
remaining three classifier (ST, SST, and SpT) build
kernel functions based on different subtree repre-
sentations on the constituent parse tree. To calculate
the constituent–tree kernels ST and SST we used
the SVM-LIGHT-TK toolkit (Moschitti, 2006).
Before applying these methods, constituent parse
trees have been reduced to the shortest-enclosed
parse following the recommendations from Zhang
et al. (2006). For a more detailed description
of the different methods we refer to the original
publications.

In addition to the PPI framework, we also
employed the general purpose relationship ex-
traction tool “Turku Event Extraction System”
(TEES) (Björne et al., 2011), a customized version
of the case-based reasoning system Moara (Neves
et al., 2009), and a self-developed feature based
classifier which is referred to as SLW. Regarding
TEES, we have used the edge extraction function-
ality for performing relationship extraction. TEES
considers features related to the tokens (e.g., part-of-
speech tags), dependency chains, dependency path
N-grams, entities (e.g., entity types) and external re-
sources, such as hypernyms in WordNet.

Moara is a case-based reasoning system for the
extraction of relationships and events. During train-
ing, interaction pairs are converted into cases and
saved into a HyperSQL database which are re-
trieved through case similarity during the classifica-
tion. Cases are composed by the following features:
the type of the entities (e.g. Brand and Group),
the part-of-speech tag of the tokens between the two
drugs (inclusive), the tags of the shortest depen-
dency path between the two drugs, and the lemma
of the non-entity tokens of the shortest dependency
path using BioLemmatizer (Liu et al., 2012). We
also consider the PHARE ontology (Coulet et al.,
2011) in the lemma feature: When a lemma matches
any of the synonyms contained in this ontology, the
category of the respective term is considered instead.
Case similarity is calculated by exact feature match-
ing, except for the part-of-speech tags whose com-
parison is based on global alignment using insertion,
deletion, and substitution costs as proposed by Spa-
sic et al. (2005).

SLW is inspired by SL (Giuliano et al., 2006;

Bunescu and Mooney, 2006) and uses the Breeze2

library. We generate n-grams over sequences of
arbitrary features (e.g. POS-tags, morphological
and syntactical features) to describe the global con-
text of an entity pair. Furthermore, we calculate
features from the local context of entities, but in
addition to SL, we include domain-specific fea-
tures used for identifying and classifying pharma-
cological substances (see our paper for DDI Task
9.1 (Rocktäschel et al., 2013)). In addition, we take
the name of the classes of a pair’s two entities as
feature to capture that entities of some class (e.g.
Brand and Group) are more likely to interact than
others (e.g. Brand and Brand).

2.3 Ensemble learning

Several community competitions previously noted
that combinations of predictions from different tools
help to achieve better results than one method
alone (Kim et al., 2009; Leitner et al., 2010). More
importantly, it is well known that ensembles increase
robustness by decreasing the risk of selecting a bad
classifier (Polikar, 2006). In this work we combined
the output of several classifiers by using majority
voting. The ensemble is used to predict DDIs re-
gardless of the four different subtypes. This com-
plies with the partial match evaluation criterion de-
fined by the competition organizers.

2.4 Relabeling

To account for DDI subtypes, we compared two ap-
proaches: (a) using the subtype prediction of TEES;
(b) training a multi-class classifier (SLW) on the
available training data for DDI subtypes. We de-
cided on using TEES, as it generated superior results
over SLW (data not shown). Thus, previously identi-
fied DDIs are relabeled into one of the four possible
subtypes using the most likely interaction subtype
from TEES.

3 Results

3.1 Cross validation

In order to compare the different approaches, we
performed document-wise 10-fold cross validation
(CV) on the training set. It has been shown that such

2http://www.scalanlp.org/

630



Type Pairs Precision Recall F1

total 3,119 78.6 78.6 78.6

effect 1,633 79.8 79.1 79.4
mechanism 1,319 79.8 79.2 79.4
advise 826 77.3 76.4 76.9
int 188 68.5 80.9 74.1

Table 4: Performance estimation for relabeling DDIs.
Pairs denotes the number of instances of this type in the
training corpus.

a setting provides more realistic performance esti-
mates than instance-wise CV (Sætre et al., 2008).
All approaches have been tested using the same
splits to ensure comparability. For APG, ST, SST,
and SpT we followed the parameter optimization
strategy defined by Tikk et al. (2010). For TEES
and Moara, we used the cost parameter C (50000)
and best performing features, respectively, based on
the CV results. For SL and SLW, we used the default
parameters.

We performed several different CV experiments:
First, we performed CV on the two corpora (Drug-
Bank and MEDLINE) separately. Second, data
from the other corpus has been additionally used
during the training phase. This allows us to esti-
mate the impact of additional, but potentially differ-
ent text. CV results for DrugBank and MEDLINE
are shown in Table 2 and 3 respectively.

3.2 Relabeling

Performance of relabeling is evaluated by perform-
ing 10-fold CV on the training set using the same
splits as in previous analysis. Note that this experi-
ment is solely performed on positive DDI instances
to estimate separability of the four different DDI-
subtypes. Results for relabeling are shown in Ta-
ble 4.

3.3 Test dataset

For the test set we submitted results using the fol-
lowing three majority voting ensembles. For Run 1
we used Moara+SL+TEES, for Run 2 we used
APG+Moara+SL+SLW+TEES and for Run 3 we
used SL+SLW+TEES. Due to time constraints we
did not use different ensembles for the two corpora.
We rather decided to use ensembles which achieved

generally good results for both training corpora. All
classifiers, except APG, have been retrained on the
combination of MEDLINE and DrugBank using
the parameter setting yielding the highest F1 in the
training phase. For APG, we trained two different
models: One model is trained on MEDLINE and
DrugBank and one model is trained on DrugBank
solely. The first model is applied on the MEDLINE
test set and the latter on the DrugBank test set. Esti-
mated results on the training corpus and official re-
sults on the test corpus are shown in Table 5.

4 Discussion

4.1 Training dataset

Document-wise CV results for the DrugBank corpus
show no clear effect when using MEDLINE as ad-
ditional training data. By using MEDLINE during
the training phase we observe an average decrease of
0.3 percentage points (pp) in F1 and an average in-
crease of 0.7 pp in area under the receiver operating
characteristic curve (AUC). The strongest impact
can be observed for APG with a decrease of 2.3 pp
in F1. We therefore decided to train APG mod-
els for DrugBank without additional MEDLINE
data. For almost all ensembles (with the excep-
tion of APG+SpT+SL) we observe superior results
when using only DrugBank as training data. Inter-
estingly, this effect can mostly be attributed to an
average increase of 3.3 pp in recall, whereas preci-
sion remains fairly stable between ensembles using
DrugBank solely and those with additional training
data.

In contrast for MEDLINE, all methods largely
benefit from additional training data with an aver-
age increase of 9.8 pp and 3.6 pp for F1 and AUC re-
spectively. For the ensemble based approaches, we
observe an average increase of 13.8 pp for F1when
using DrugBank data in addition.

When ranking the different methods by F1 and
calculating correlation between the two differ-
ent corpora, we observe only a weak correlation
(Kendall’s τ = 0.286, p< 1). In other words, ma-
chine learning methods show varying performance-
ranks between the two corpora. This difference is
most pronounced for SL and SpT, with four ranks
difference between DrugBank and MEDLINE. It
is noteworthy that the two corpora are not directly
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Regular CV Combined CV

Method P R F1 AUC P R F1 AUC

SL 61.5 79.0 69.1 92.8 62.1 78.4 69.2 93.0
APG 77.2 62.6 69.0 91.5 75.9 59.8 66.7 91.6
TEES 77.2 62.0 68.6 87.3 75.5 60.9 67.3 86.9
SLW 73.7 60.0 65.9 91.3 73.4 61.2 66.6 91.3
Moara 72.1 55.2 62.5 — 72.0 54.7 62.1 —
SpT 51.4 73.4 60.3 87.3 52.7 71.4 60.6 87.7
SST 51.9 61.2 56.0 85.4 55.1 57.1 56.0 86.1
ST 47.3 64.2 54.2 82.3 48.3 64.3 54.9 82.7

SL+SLW+TEES 76.1 69.9 72.7 — 75.9 65.3 70.1 —
APG+SL+TEES 79.3 69.9 74.2 — 79.2 65.4 71.5 —
Moara+SL+TEES 79.9 69.6 74.2 — 79.6 65.1 71.6 —
Moara+SL+APG 81.4 70.6 75.5 — 81.3 70.3 75.3 —
APG+Moara+SL+SLW+TEES 84.0 68.1 75.1 — 83.7 64.2 72.6 —
APG+SpT+TEES 76.8 68.0 72.1 — 77.1 63.4 69.6 —
APG+SpT+SL 68.7 74.8 71.5 — 69.7 73.8 71.6 —

Table 2: Cross validation results on DrugBank corpus. Regular CV is training and evaluation on DrugBank only.
Combined CV is training on DrugBank and MEDLINE and testing on DrugBank. Higher F1 between these two
settings are indicated in boldface for each method. Single methods are ranked by F1.

Regular CV Combined CV

Method P R F1 AUC P R F1 AUC

TEES 70.7 36.0 44.5 82.2 59.6 46.5 51.4 84.9
SpT 37.8 38.6 34.6 78.6 42.3 55.3 47.1 80.4
APG 46.5 44.3 42.4 82.3 38.1 62.2 46.4 82.8
SST 31.3 37.7 31.8 74.1 36.7 61.7 44.9 79.5
SL 43.7 40.1 38.7 78.9 34.7 67.1 44.7 81.1
SLW 58.0 14.3 20.4 73.4 50.1 38.0 42.0 82.4
Moara 49.8 31.9 37.6 — 45.6 43.2 41.9 —
ST 25.2 43.8 30.1 70.5 36.1 48.3 39.8 74.2

SL+SLW+TEES 73.6 29.0 37.6 — 55.2 52.7 53.1 —
APG+SL+TEES 60.7 37.9 43.4 — 49.9 62.4 54.3 —
Moara+SL+TEES 68.0 33.0 42.2 — 62.1 55.5 57.4 —
Moara+SL+APG 57.7 36.7 42.4 — 48.3 60.9 52.8 —
APG+Moara+SL+SLW+TEES 73.3 28.3 36.8 — 60.6 54.4 56.5 —
APG+SpT+TEES 58.5 37.4 41.7 — 57.5 59.2 57.1 —
APG+SpT+SL 48.3 39.9 40.0 — 43.6 64.3 51.0 —

Table 3: Cross validation results on MEDLINE corpus. Regular CV is training and evaluation on MEDLINE only.
Combined CV is training on DrugBank and MEDLINE and testing on MEDLINE. Higher F1 between these two
settings are indicated in boldface for each method. Single methods are ranked by F1.
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Evaluation
Training Test

Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Partial 78.7 67.3 72.6 82.9 66.4 73.7 75.2 67.6 71.2 84.1 65.4 73.6 86.1 65.7 74.5 80.1 72.2 75.9

Strict 65.7 56.1 60.5 70.0 56.0 62.2 63.0 56.7 59.7 68.5 53.2 59.9 69.5 53.0 60.1 64.2 57.9 60.9
-mechanism 61.8 49.7 55.1 68.1 50.0 57.7 59.2 50.3 54.4 72.2 51.7 60.2 74.9 52.3 61.6 65.3 58.6 61.8
-effect 68.8 57.9 62.9 71.8 57.6 63.9 66.1 57.4 61.5 63.7 57.5 60.4 63.6 55.8 59.5 60.7 61.4 61.0
-advise 64.6 60.5 62.5 68.2 59.7 63.6 61.1 61.5 61.3 73.3 53.4 61.8 74.5 55.7 63.7 69.0 58.4 63.2
-int 68.6 50.0 57.8 75.4 52.1 61.6 70.9 56.9 63.1 67.8 41.7 51.6 67.3 38.5 49.0 67.8 41.7 51.6

Table 5: Relation extraction results on the training and test set. Run 1 builds a majority voting on Moara+SL+TEES,
Run 2 on APG+Moara+SL+SLW+TEES, and Run 3 on SL+SLW+TEES. Partial characterizes only DDI detection
without classification of subtypes, whereas strict requires correct identification of subtypes as well.

comparable, as DrugBank is one order of magnitude
larger in terms of instances than the MEDLINE cor-
pus. Additionally, documents come from different
sources and it is tempting to speculate that there
might be a certain amount of domain specificity be-
tween DrugBank and MEDLINE sentences.

We tested for domain specificity by performing
cross-corpus experiments, i.e., we trained a classi-
fier on DrugBank, applied it on MEDLINE and vice
versa. When training on MEDLINE and testing
on DrugBank, we observe an average decrease of
about 15 pp in F1 in comparison to DrugBank in-
domain CV results. For the other setting, we observe
a lower decrease of approximately 5 pp in compari-
son to MEDLINE in-domain CV results.

From the current results, it seems that the doc-
uments from DrugBank and MEDLINE have dif-
ferent syntactic properties. However, this requires a
more detailed analysis of different aspects like dis-
tribution of sentence length, negations, or passives
between the two corpora (Cohen et al., 2010; Tikk
et al., 2013). We assume that transfer learning tech-
niques could improve results on both corpora (Pan
and Yang, 2010).

The DDI-relabeling capability of TEES is very
balanced with F1 measures ranging from 74.1 % to
79.4 % for all four DDI subclasses. This is unex-
pected since classes like “effect” occur almost ten
times more often than classes like “int” and classi-
fiers often have problems with predicting minority
classes.

4.2 Test dataset

On the test set, our best run achieves an F1 of 76 %
using the partial evaluation schema. This is slightly

better than the performance for DrugBank training
data shown in Table 2 and substantially better than
estimations for MEDLINE (see Table 3). With
F1 measures ranging between 74 % to 76 % only
minor performance differences can be observed be-
tween the three different ensembles.

When switching from partial to strict evaluation
scheme an average decrease of 15 pp in F1 can be ob-
served. As estimated on the training data, relabeling
performance is indeed very similar for the different
DDI-subtypes. Only for the class with the least in-
stances (int), a larger decrease in comparison to the
other three classes can be observed for the test set.
In general, results for test set are on par or higher
than results for the training set.

5 Conclusion

In this paper we presented our approach for the
SemEval 2013 – Task 9.2 DDI extraction challenge.
Our strategy builds on a cascaded (coarse to fine
grained) classification strategy, where a majority
voting ensemble of different methods is initially
used to find generic DDIs. Predicted interactions
are subsequently relabeled into four different sub-
types. DDI extraction seems to be a more difficult
task for MEDLINE abstracts than for DrugBank ar-
ticles. In our opinion, this cannot be fully attributed
to the slightly higher ratio of positive instances in
DrugBank and points towards structural differences
between the two corpora.
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T. Rocktäschel, T. Huber, M. Weidlich, and U. Leser.
2013. WBI-NER: The impact of domain-specific
features on the performance of identifying and
classifying mentions of drugs. In Proceedings of
the 7th International Workshop on Semantic Eval-
uation (SemEval 2013).

R. Sætre, K. Sagae, and J. Tsujii. 2008. Syntactic
features for protein-protein interaction extraction.
In Proc. of LBM’07.

I. Segura-Bedmar, P. Martı́nez, and M. Herrero-
Zazo. 2013. Semeval-2013 task 9: Extraction of
drug-drug interactions from biomedical texts. In
Proc. of the 7th International Workshop on Se-
mantic Evaluation (SemEval 2013).

I. Segura-Bedmar, P. Martı́nez, and D. Sanchez-
Cisneros. 2011. The 1st ddiextraction-2011 chal-
lenge task: Extraction of drug-drug interactions
from biomedical text. In Proc. of the 1st Chal-
lenge Task on Drug-Drug Interaction Extraction
2011, pages 1–9.

I. Solt, F. P. Szidarovszky, and D. Tikk. 2010. Con-
cept, Assertion and Relation Extraction at the
2010 i2b2 Relation Extraction Challenge using
parsing information and dictionaries. In Proc. of
i2b2/VA Shared-Task.

I. Spasic, S. Ananiadou, and J. Tsujii. 2005. MaS-
TerClass: a case-based reasoning system for the
classification of biomedical terms. Bioinformat-
ics, 21(11):2748–2758.

P. Thomas, M. Neves, I. Solt, D. Tikk, and U. Leser.
2011. Relation extraction for drug-drug interac-
tions using ensemble learning. In Proc. of the
1st Challenge Task on Drug-Drug Interaction Ex-
traction 2011, pages 11–18.

D. Tikk, I. Solt, P. Thomas, and U. Leser. 2013.
A detailed error analysis of 13 kernel methods
for protein-protein interaction extraction. BMC
Bioinformatics, 14(1):12.

D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, and

U. Leser. 2010. A comprehensive benchmark of
kernel methods to extract protein-protein interac-
tions from literature. PLoS Comput Biol, 6.

S. V. N. Vishwanathan and A. J. Smola. 2002. Fast
Kernels for String and Tree Matching. In Proc. of
NIPS’02, pages 569–576.

M. Zhang, J. Zhang, J. Su, and G. Zhou. 2006. A
Composite Kernel to Extract Relations between
Entities with Both Flat and Structured Features.
In Proc. of ICML’06, pages 825–832.

635


