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Abstract

This paper describes the CoMeT system, our
contribution to the SemEval 2013 Task 7 chal-
lenge, focusing on the task of automatically
assessing student answers to factual questions.
CoMeT is based on a meta-classifier that uses
the outputs of the sub-systems we developed:
CoMiC, CoSeC, and three shallower bag ap-
proaches. We sketch the functionality of all
sub-systems and evaluate their performance
against the official test set of the challenge.
CoMeT obtained the best result (73.1% accu-
racy) for the 3-way unseen answers in Beetle
among all challenge participants. We also dis-
cuss possible improvements and directions for
future research.

1 Introduction

Our contribution to the SemEval 2013 Task 7 chal-
lenge (Dzikovska et al., 2013) presented here is based
on our research in the A4 project! of the SFB 833,
which is dedicated to the question how meaning can
be computationally compared in realistic situations.
In realistic situations, utterances are not necessarily
well-formed or complete, there may be individual
differences in situative and world knowledge among
the speakers. This can complicate or even preclude
a complete linguistic analysis, leading us to the fol-
lowing research question: Which linguistic repre-
sentations can be used effectively and robustly for
comparing the meaning of sentences and text frag-
ments computationally?

'nttp://purl.org/dm/projects/sfb833-a4
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In order to work on effective and robust processing,
we base our work on reading comprehension exer-
cises for foreign language learners, of which we are
also collecting a large corpus (Ott et al., 2012). Our
first system, CoMiC, is an alignment-based approach
which exists in English and German variants (Meur-
ers et al., 2011a; Meurers et al., 2011b). CoMiC
uses various levels of linguistic abstraction from sur-
face tokens to dependency parses. Further work that
we are starting to tackle includes the utilization of
Information Structure (Krifka, 2007) in the system.

The second approach emerging from the research
project is CoSeC (Hahn and Meurers, 2011; Hahn
and Meurers, 2012), a semantics-based system for
meaning comparison that was developed for German
from the start and was ported to operate on English
for this shared task. As a novel contribution in this
paper, we present CoMeT (Comparing Meaning in
Tiibingen), a system that employs a meta-classifier
for combining the output of CoMiC and CoSeC and
three shallower bag approaches.

In terms of the general context of our work, short
answer assessment essentially comes in the two fla-
vors of meaning comparison and grading, the first
trying to determine whether or not two utterances
convey the same meaning, the latter aimed at grading
the abilities of students (cf. Ziai et al., 2012). Short
answer assessment is also closely related to the field
of Recognizing Textual Entailment (RTE, Dagan et
al., 2009), which this year is directly reflected by
the fact that SemEval 2013 Task 7 is the Joint Stu-
dent Response Analysis and 8th Recognizing Textual
Entailment Challenge.
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Turning to the organization of this paper, section 2
introduces the three types of sub-systems and the
meta-classifier. In section 3, we report on the evalu-
ation results of each sub-system both for our devel-
opment set as well as for the official test set of the
shared task. We then discuss possible causes and
implications of the findings we made by participating
in the shared task.

2 Systems

The CoMeT system that we describe in this paper
is a combination of three types of sub-systems in
one meta-classifier. CoSeC and CoMiC are sys-
tems that align linguistic units in the student answer
to those in the reference answer. In contrast, the
bag-based approaches employ a vocabulary of words,
lemmas, and Soundex hashes constructed from all
of the student answers in the training data. In the
meta-classifier, we tried to combine the benefits of the
named sub-systems into one large system that eventu-
ally computed our submission to the SemEval 2013
Task 7 challenge.

2.1 CoMiC

CoMiC (Comparing Meaning in Context) is an
alignment-based system, i.e., it operates on a map-
ping of linguistic units found in a student answer to
those given in a reference answer. CoMiC started off
as a re-implementation of the Content Assessment
Module (CAM) of Bailey and Meurers (2008). It
exists in two flavors: CoMiC-DE for German, de-
scribed in Meurers et al. (2011b), and CoMiC-EN for
English, described in Meurers et al. (2011a). Both
systems are positioned in the landscape of the short
answer assessment field in Ziai et al. (2012). In this
paper, we refer to CoMiC-EN simply as CoMiC.
Sketched briefly, CoMiC operates in three stages:

1. Annotation uses various NLP modules to equip
student answers and reference answers with lin-
guistic abstractions of several types.

2. Alignment creates links between these linguistic
abstractions from the reference answer to the
student answer.

3. Classification uses summary statistics of these
alignment links in machine learning in order to
assign labels to each student answer.
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Automatic annotation and alignment are imple-
mented in the Unstructured Information Management
Architecture (UIMA, Ferrucci and Lally, 2004). Our
UIMA modules mainly wrap around standard NLP
tools of which we provide an overview in Table 1.
We used the standard statistical models which are
provided with the NLP tools.

‘ Annotation Task ‘ NLP Component ‘
Sentence Detection OpenNLP?
Tokenization OpenNLP

Lemmatization
Spell Checking

morpha (Minnen et al., 2001)
Edit distance (Levenshtein, 1966),
SCOWL word list?

TreeTagger (Schmid, 1994)
OpenNLP

WordNet (Fellbaum, 1998)

Part-of-speech Tagging
Noun Phrase Chunking
Synonyms and
Semantic Types
Similarity Scores

PMI-IR (Turney, 2001)

on UkWaC (Baroni et al., 2009)
MaltParser (Nivre et al., 2007)
Heads from dependency parse

Dependency Relations
Keyword extraction

Table 1: NLP tools used for CoMiC and Bag Approaches

Annotation ranges from very basic linguistic units
such as sentences and tokens with POS and lemmas,
over NP chunks, up to full dependency parses of
the input. For distributional semantic similarity via
PMI-IR (Turney, 2001), a local search engine based
on Lucene (Gospodneti¢ and Hatcher, 2005) querying
the UkWaC corpus (Baroni et al., 2009) was used,
since all major search engines meanwhile have shut
down their APIs.

After the annotation of linguistic units has taken
place, candidate alignment links are created within
UIMA. In a simple example case, a candidate align-
ment link is a pair of tokens that is token identical
in the student answer and in the reference answer.
The same token in the student answer may also be
part of a candidate alignment link that maps to an-
other token in the reference answer that, e.g., has the
same lemma, or is a possible synonym, or again is
token identical. Other possible links are based on
spelling-corrected tokens, semantic types, or high
values of the PMI-IR similarity measure.

Words that are present in the reading comprehen-
sion question and that are also found in the student an-
swer are excluded from alignment, resulting in a very

http://incubator.apache.org/opennlp
*http://wordlist.sourceforge.net



basic implementation of an approach to givenness
(cf. Halliday, 1967, p. 204 and many others since).

Subsequently, a globally optimal alignment of lin-
guistic units in the reference answer and student an-
swer is determined using the Traditional Marriage
Algorithm (Gale and Shapley, 1962).

At this point, processing within UIMA comes to
an end with an output module that generates the files
containing the features for machine learning. These
features basically are summary statistics of the types
of alignment links. An overview of these numeric
features used is given in Table 2.

] Feature

Description ‘

1. Keyword Overlap | Percent of keywords aligned
(relative to target)

Percent of aligned
target/learner tokens
Percent of aligned
target/learner chunks
Percent of aligned
target/learner triples

Percent of token alignments
that were token-identical
Percent of token alignments
that were similarity-resolved
Percent of token alignments
that were type-resolved
Percent of token alignments
that were lemma-resolved
Percent of token alignments
that were synonym-resolved
Number of kinds of
token-level alignments

2./3. Token Overlap

4./5. Chunk Overlap

6./7. Triple Overlap

8. Token Match

9. Similarity Match

10. Type Match

11. Lemma Match

12. Synonym Match

13. Variety of Match
(0-5)

Table 2: Features used in CoMiC’s classification phase

Current versions of CoMiC use the WEKA toolkit
(Hall et al., 2009), allowing us to experiment with
different machine learning strategies. In general, any
type of classification can be trained in this machine
learning phase, a binary correct vs. incorrect de-
cision as in the 2-way task being the simplest case.
The best results with CoMiC on our held-out develop-
ment set were achieved using WEKA’s J48 classifier,
which is an implementation of decision tree based on
Quinlan (1993).

In terms of linguistic abstractions, CoMiC leaves
the choice of representations used to its alignment
step. However, in the final machine learning step, no
concrete information about linguistic units is present
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any more. The machine learning component only
sees alignment configurations which are indepen-
dent of concrete words, phrases, or any other lin-
guistic information. This high level of abstraction
suggests that CoMiC should perform better than other
approaches on unseen topics and unseen questions,
since it does not rely on concrete units as, e.g., a
bag-of-words approach does.

2.2 CoSeC

CoSeC (Comparing Semantics in Context) performs
meaning comparison on the basis of an underspec-
ified semantic representation robustly derived from
the learner and the reference answers. The sys-
tem was developed for German (Hahn and Meurers,
2012), on the basis of which we created the English
CoSeC-EN for the SemEval 2013 Task 7 challenge.

Using an explicit semantic formalism in principle
makes it possible to precisely represent meaning dif-
ferences. It also supports a direct representation of
Information Structure as a structuring of semantics
representations (Krifka, 2007).

CoSeC is based on Lexical Resource Semantics
(LRS, Richter and Sailer, 2004). Being an under-
specified semantic formalism, LRS avoids the costly
computation of all readings and provides access to
the building blocks of the semantic representation,
while additional constraints provide the information
about their composition.

As described in Hahn and Meurers (2011), LRS
representations can be derived automatically using
a two-step approach based on part-of-speech tags
assigned by TreeTagger (Schmid, 1994) and depen-
dency parses by MaltParser (Nivre et al., 2007). First,
the dependency structure is transformed into a com-
pletely lexicalized syntax-semantics interface rep-
resentation, which abstracts away from some form
variation at the surface. These representations are
then mapped to LRS representations. The approach
is robust in that it always results in an LRS structure,
even for ill-formed sentences.

CoSeC then aligns the LRS representations of the
reference answer and the student answer to each other
and also to the representation of the question. The
alignment approach takes into account local criteria,
namely the semantic similarity of pairs of elements
that are linked by the alignment, as well as global
criteria measuring the extent to which the alignment



preserves structure at the levels of variables and the
subterm structure of the semantic formulas.

Local similarity of semantic expressions is esti-
mated using WordNet (Fellbaum, 1998), FrameNet
(Baker et al., 1998), PMI-IR (Turney, 2001) on the
UkWaC (Baroni et al., 2009) as used in CoMiC, the
Minimum Edit Distance (Levenshtein, 1966), and
special parameters for comparing functional elements
such as quantifiers and grammatical function labels.

Based on the alignments, the system marks ele-
ments which are not linked to elements in the ques-
tion or which are linked to the semantic contribution
of an alternative in an alternative question as “fo-
cused”. This is intended as a first approximation of
the concept of focus in the sense of Information Struc-
ture (von Heusinger, 1999; Kruijff-Korbayova and
Steedman, 2003; Krifka, 2007), an active field of re-
search in linguistics addressing the question how the
information in sentences is packaged and integrated
into discourse. Focus elements are expected to be
particularly relevant for determining the correctness
of an answer (Meurers et al., 2011b).

Overall meaning comparison is then done based
on a set of numerical scores computed from the align-
ments and their quality. For each of these scores, a
threshold is empirically determined, over which the
student answer is considered to be correct. Among
the scores discussed by Hahn and Meurers (2011),
weighted-target focus, consistently scored best in the
development set. This score measures the percent-
age of terms in the semantic representation of the
reference answer which are linked to elements of
the student answer in relation to the number of all
elements in the representation of the reference an-
swer. Only terms that were marked as focused in
the preceding step are counted. Functional elements,
i.e., quantifiers, predicates representing grammatical
function labels, or the lambda operator, are weighted
differently from other elements.

This threshold method can only be used to perform
2-way classification. Unlike the machine learning
step in CoMiC, it does not generalize to 3-way or
5-way classification.

The alignment algorithm uses several numerical
parameters, such as weights for the different compo-
nents measuring semantic similarities, weights for
the different overall local and global criteria, and
the weight of the weighted-target focus score. These
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parameters are optimized using Powells algorithm
combined with grid-based line optimization (Press et
al., 2002). To avoid overfitting, the parameters and
the threshold are determined on disjoint partitions of
the training set.

In terms of linguistic abstractions, meaning assess-
ment in CoSeC is based entirely on underspecified
semantic representations. Surface forms are indi-
rectly encoded by the structure of the representation
and the predicate names, which are usually derived
from the lemmas. As with CoMiC, parameter opti-
mization and the determination of the thresholds for
the numerical scores do not involve concrete infor-
mation about linguistic objects. Again, the high level
of abstraction suggests that CoSeC should perform
better than other approaches on unseen topics and
unseen questions.

2.3 The Bag Approaches

Inspired by the bag-of-words concept that emerged
from information retrieval (Salton and McGill, 1983),
we designed a system that uses bag representations
of student answers. For each student answer, there
are three bags, each containing one of the following
representations: words, lemmas and Soundex hashes
of that answer. The question ID corresponding to
the answer is added to each bag as a pseudo-word,
allowing the machine learner to adjust to question-
specific properties. Based on the bag representations,
the approach compares a given student answer to a
model trained on all other known student answers.
On the one hand, this method ignores the presence of
reference answers (although they could be added to
the training set as additional correct answers), on the
other hand it makes use of information not taken into
account by alignment-based systems such as CoMiC
or CoSeC.

Concerning pre-processing, the linguistic anal-
yses such as tokenization and lemmatization are
identical to those of CoMiC, since the bag gener-
ator technically is just another output module of the
UIMA-based pipeline used there. No stop-word list
is used. The bags are fed into a support vector-based
machine learner. We used WEKA'’s Sequential Min-
imal Optimization (SMO, Platt, 1998) implementa-
tion with the radial basis function (RBF) kernel, since
it yielded good results on our development set and
since it supports output of the estimated probabilities



for each class. The optimal gamma parameter and
complexity constant were estimated via 10-fold grid
search.

In terms of abstractions, all bag-based approaches
simply disregard word order and in case of binary
bags even word frequency. Still, a bit of the relation
between words is essentially encoded in their mor-
phology. This piece of information is discarded in
the bags of lemmas, eventually, e.g., putting words
like “bulb” and “bulbs” in the same vector slot. Fur-
ther away from the surface are the Soundex hashes,
a phonetic representation of English words patented
by Russell (1918). The well-known algorithm trans-
forms similar-sounding English words into the same
representation of characters and numbers, thereby
ironing out many spelling mistakes and common
confusion cases of homophones such as “there” vs.
“their”. The MorphAdorner* implementation we used
returns empty Soundex hashes for input tokens that
do not start with a letter of the alphabet. However,
we found in our experiments, that the presence of
these empty hashes in the bags has a positive impact
on performance. This is most likely due to the fact
that it discriminates answers containing punctuation
(not a letter of the alphabet) from those which do not.

Since the bag approaches use Soundex as pho-
netic equivalence classes, but no semantic equiva-
lence classes, they should perform best on the unseen
answers data in which most lexical material from the
test set is likely to already be present in the training
set.

2.4 CoMeT: A Meta-Classifier

As described in the previous sections, our sub-
systems perform short answer evaluation on differ-
ent representations and at different levels of abstrac-
tion. The bag approaches are very surface-oriented,
whereas CoSeC uses a semantic formalism to com-
pare answers to each other. We expected each system
to show its strengths in different test scenarios, so a
way was needed to combine the predictions of differ-
ent systems into the final result.

CoMeT (Comparing Meaning in Tiibingen) is a
meta-classifier which builds on the predictions of
our individual systems (feature stacking, see Wolpert,
1992). The rationale is that if systems are comple-

‘nttp://morphadorner.northwestern.edu
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mentary, their combination will perform better (or at
least as good) than any individual system on its own.
The design is as follows:

Each system produces predictions on the training
set, using 10-fold cross-validation, and on the test set.
In addition to the predicted class, each system was
also made to output probabilities for each possible
class (cf., e.g., Tetreault et al., 2012a). The class
probabilities were then used as features in the meta
classifier to train a model for the test data. In addition
to the probabilities, we also used the question ID and
module ID in the meta-classifier, in the hope that they
would allow differentiation between scenarios. For
example, an unseen question ID means that we are
not testing on unseen answers and thus predictions
from systems with more abstraction from the surface
may be preferred.

The class probabilities come from different
sources, depending on the system. In the case of
CoMiC, they are extracted directly from the decision
trees. For the bag approaches, we used WEKA’s op-
tion to fit logistic models to the SVM output after
classification in order to estimate probabilities. Fi-
nally, the CoSeC probabilities are derived directly
from its final score. As mentioned in section 2.2,
CoSeC only does binary classification, so those prob-
abilities are used in the meta-classifier for all tasks.

Based on the results on our internal development
set (see section 3.1), we chose different system com-
binations for different scenarios. For unseen topics
and unseen questions, we used only CoMiC in com-
bination with CoSeC, since the inclusion of the bag
approaches had a negative impact on results. For un-
seen answers, we additionally included the bag mod-
els. All meta-classification was done using WEKA’s
Logistic Regression implementation. The results are
discussed in section 3.

3 Evaluation

In this section, we present the results for each of the
sub-systems, both on the custom-made split of the
training data we used in our development, as well as
on the official test data of the SemEval 2013 Task 7
challenge. Subsequently, we discuss possible causes
for issues raised by our evaluation results.



3.1 Development Set

In order to be as close as possible to the final test
setting, we replicated the official test scenarios on
the training set, resulting in a train/dev/test split for
each of the corpora. For Beetle, we held out all an-
swers to two random questions for each module to
form the unseen questions scenario, and five random
answers from each remaining question to form the
unseen answers scenario. For SciEntsBank, we held
out module LF for dev and module VB for test to
form the unseen topics scenario, because they have
an average number of questions (11). The LF module
turned out to be far more skewed towards incorrect
answers (76.8%) than the training set on average
(57.5%). While this skewedness needs to be taken
into account for the interpretation of the development
results, it did not have a negative effect on our fi-
nal test results. Furthermore, analogous to Beetle,
we held out all answers to one random question for
each remaining module for unseen-questions, and
two random answers from each remaining question
for unseen answers.

The dev set was used for tuning and design deci-
sions concerning which individual systems to com-
bine in the stacked classifier, while we envisaged
the fest set to be used as a final checkpoint before
submission.

The accuracy results for all sub-systems on the
development set are reported in detail in Table 3.
The majority baseline reflects the accuracy a system
would achieve by always labelling any student answer
as “incorrect”, hence it is equivalent to the percentage
of incorrect answers in the data. The lexical baseline
is the performance of the system provided by the
challenge organizers.

Beetle SciEntsBank
System duA | duQ | duA | duQ | duT
Maj. Baseline [| 57.14% | 59.28% | 54.30% | 60.70% | 76.84%
Lex. Baseline || 75.43% | 71.10% | 63.44% | 66.05% | 59.54%
CoMiC 76.57% | 71.52% | 67.20% | 70.23% | 64.63%
Bag of Words || 85.14% | 62.03% | 80.65% | 54.65% | 73.79%
~ of Lemmas | 85.71% | 58.02% | 80.11% | 52.33% | 74.55%
~ of Soundex || 86.86% | 60.76% | 81.18% | 53.95% | 72.77%
CoSeC 76.00% | 74.89% | 64.52% | 73.49% | 68.96%
CoMeT 88.00% | 75.95% | 81.18% | 66.74% | 68.45%

Table 3: Development set: accuracy for 2-way task (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)
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The systems presented in section 2 performed as
expected: The Bag-of-Soundex system achieved its
best scores on the unseen answers where overlap of
vocabulary was most likely, outperforming CoMiC
and CoSeC with accuracy values as high as 86.86%.
For Beetle unseen answers, the meta-classifier op-
erated as expected and improved the overall results
to 88.86%. For SciEntsBank unseen answers, it re-
mained stable at 81.18%.

As expected, CoMiC and CoSeC with their align-
ment not depending on vocabulary outperformed the
bag approaches in the other scenarios, in which the
question or even the domain were not known during
training. However, both alignment-based systems
failed on SciEntsBank’s unseen topics in comparison
to the rather high majority baseline.

3.2 Official Test Set

For our submission to the SemEval 2013 Task 7 chal-
lenge, we trained our sub-systems on the entire of-
ficial training set. The overall performance of the
CoMeT system on all sub-tasks is shown in Table 4.

Beetle SciEntsBank
uA ‘ uQ uA ‘ uQ ‘ uT
Lexical 2-way || 79.7% | 74.0% | 66.1% | 67.4% | 67.6%
Overlap  3-way || 59.5% | 51.2% | 55.6% | 54.0% | 57.7%
Baseline 5-way || 51.9% | 48.0% | 43.7% | 41.3% | 41.5%
Best 2-way || 84.5% | 74.1% | 77.6% | 74.5% | 71.1%
System  3-way || 73.1% | 59.6% | 72.0% | 66.3% | 63.7%
S-way || 71.5% | 62.1% | 64.3% | 53.2% | 51.2%
CoMeT  2-way || 83.8% | 70.2% | 77.4% | 60.3% | 67.6%
3-way || 73.1% | 51.8% | 71.3% | 54.6% | 57.9%
S-way || 68.8% | 48.8% | 60.0% | 43.7% | 42.1%

Table 4: Official test set: overall accuracy of CoMeT (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)

While CoMeT won the Beetle 3-way task in unseen
answers, our main focus is on the 2-way task. The
results for the 2-way task of our sub-systems on the
official test set are shown in Table 5.

The first row of the table reports the results of the
winning system of the challenge; the two baselines
are computed as before. In general, the accuracy val-
ues of CoMeT exhibit a drop of around 5% from
our development set to the official test set. The
meta-classifier was unable to benefit from the dif-
ferent sub-systems except for the unseen answers in
SciEntsBank that slightly outperformed the best bag
approach.



Beetle SciEntsBank

System uA ‘ uQ uA ‘ uQ ‘ uT

Best 84.50% | 74.10% | 77.60% | 74.50% | 71.10%
Maj. Baseline || 59.91% | 58.00% | 56.85% | 58.94% | 57.98%
Lex. Baseline || 79.70% | 74.00% | 66.10% | 67.40% | 67.60%
CoMiC 76.08% | 70.57% | 67.96% | 66.30% | 67.97%
Bag of Words || 83.14% | 67.52% | 75.93% | 57.84% | 59.84%
~ of Lemmas || 83.60% | 67.16% | 76.67% | 58.25% | 58.81%
~ of Soundex || 84.05% | 68.38% | 75.93% | 57.57% | 58.02%
CoSeC 62.19% | 63.61% | 67.22% | 58.94% | 62.36%
CoMeT 83.83% | 70.21% | 77.41% | 60.30% | 67.62%
CoSeC* 75.40% | 70.82% | 72.04% | 64.94% | 70.60%
CoMeT* 84.51% | 71.43% | 79.26% | 65.35% | 69.53%

Table 5: Official test set: accuracy for 2-way task (uA:
unseen answers, uQ: unseen questions, uT: unseen topics)

Even though it does not live up to the standards of
the bag approaches in their area of expertise (unseen
answers), the CoMiC systems outperforms the bags
on the unseen question and unseen topic sub-sets as
expected. Note that on unseen topics, CoMiC still
scores 10% above the majority baseline on the official
test set, in contrast to the drop of more than 10%
below the baseline for the corresponding (skewed)
development set.

However, the results for CoSeC are around 10%
lower on the unseen questions, and almost 7% lower
on the unseen topics of the test data than on the de-
velopment set, a drop that the overall meta-classifier
(CoMeT) was unable to catch. Investigating this drop
in comparison to our development set, we checked
the correctness of the training script and discovered a
bug in the CoSeC setup that led to the parameters and
the thresholds being computed on the same partition
of the training set, i.e., the system overfitted to this
partition, while the remainder of the training set was
not used for training. Correcting the bug resulted in
CoSeC accuracy values broadly comparable to those
of CoMiC, as was the case on the development set.
This confirms that the reason for the drop in the sub-
mission was not a flaw in the CoSeC system as such,
but a programming bug in a peripheral component.

With this bug fixed, CoSeC performs 5%—13%
better on the test set, and the meta-classifier would
have been able to benefit from the regularly perform-
ing CoSeC, improving in performance up to 5%.
These two amended systems are listed as CoSeC*
and CoMeT* in Table 5. For the two unseen an-
swers scenarios, CoMeT* would outperform the best
scoring systems of the challenge in the 2-way task.
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3.3 Discussion

In this section, we try to identify some general ten-
dencies from studying the results. Firstly, we can
observe that due to the strong performance of the bag
models, unseen answers scores are generally higher
than their counterparts. It seems that if questions
have been seen before, surface-oriented methods out-
perform more abstract approaches. However, the
picture is different for unseen domains and unseen
questions. We are generally puzzled by the fact that
many systems in the shared task scored worse on
unseen questions, where in-domain training data is
available, than on unseen domains, where this is not
the case. The CoMeT classifier suffered especially in
unseen questions of SciEntsBank, scoring lower than
our best system would have on its own (see Table 5);
even after the CoSeC bug was fixed, CoMeT* still
scored worse there than CoMiC on its own.

In general, we likely would have benefited from
domain adaptation, as described in, e.g., Daume III
(2007). Consider that the input for the meta-classifier
always consists of the same set of features produced
via standard cross-validation, regardless of the test
scenario. Instead, the trained model should have dif-
ferent feature weights depending on what the model
will be tested on.

4 Conclusion and Outlook

We presented our approach to Task 7 of SemEval
2013, consisting of a combination of surface-oriented
bag models and the increasingly abstract alignment-
based systems CoMiC and CoSeC. Predictions of
all systems were combined using a meta classifier in
order to produce the final result for CoMeT.

The results presented show that our approach per-
forms competitively, especially in the unseen answers
test scenarios, where we obtained the best result of all
participants in the 3-way task with the Beetle corpus
(73.1% accuracy). As expected, the unseen topics
scenario proved to be more challenging, with results
at 67.6% accuracy in the 2-way task for CoMeT. Sur-
prisingly, CoMeT performed consistently worse in
the unseen questions scenarios, which we attribute
to rather low CoSeC results there and to the way the
meta classifier is trained, which currently does not
take into account the test scenario it is trained for
and instead uses the module and question IDs as fea-



tures, which turned out not to be an effective domain
adaptation approach.

In our future research, work on CoMiC will con-
centrate on integrating two aspects of the context:
First, we are planning to develop an automatic ap-
proach to focus identification in order to pinpoint the
essential parts of the student answers. Second, for
data sets where a reading text is available, we will
try to automatically determine the location of the rel-
evant source information given the question, which
can then be used as alternative or additional reference
material for answer evaluation.

The CoMiC system currently also relies on the
Traditional Marriage Algorithm to select the optimal
global alignment between student answer and refer-
ence answer. We plan to replace this algorithm by
a machine learning component that can handle this
selection in a data-driven way.

For CoSeC, we plan to develop an extension that
allows for n-to-m mappings, hence improving the
alignment performance for multi-word units such as,
e.g., phrasal verb constructions.

The bag approaches could be augmented by explor-
ing additional levels of abstractions, e.g., semantic
equivalence classes constructed via WordNet lookup.

In sum, while we will also plan to explore opti-
mizations to the training setup of the meta-classifier
(e.g., domain adaptation along the lines of Daume
III, 2007), the main focus of our further research lies
in improving the individual sub-systems, which then
again are expected to push the overall performance
of the CoMeT meta-classifier system.
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