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Abstract

In this paper, we describe a method for as-
sessing student answers, modeled as a para-
phrase identification problem, based on sub-
stitution by Basic English variants. Basic En-
glish paraphrases are acquired from the Sim-
ple English Wiktionary. Substitutions are ap-
plied both on reference answers and student
answers in order to reduce the diversity of
their vocabulary and map them to a common
vocabulary. The evaluation of our approach
on the SemEval 2013 Joint Student Response
Analysis and 8th Recognizing Textual Entail-
ment Challenge data shows promising results,
and this work is a first step toward an open-
domain system able to exhibit deep text un-
derstanding capabilities.

1 Introduction

Automatically assessing student answers is a chal-
lenging natural language processing task (NLP). It
is a way to make test grading easier and improve
adaptive tutoring (Dzikovska et al., 2010), and is the
goal of the SemEval 2013’s task 7, titled Joint Stu-
dent Response Analysis. More specifically, given a
question, a known correct “reference answer” and a
1- or 2-sentence student answer, the goal is to deter-
mine the student’s answer accuracy (Dzikovska et
al., 2013). This can be seen as a paraphrase identi-
fication problem between student answers and refer-
ence answers.

Paraphrase identification searches whether two
sentences have essentially the same meaning (Culi-
cover, 1968). Automatically generating or extract-
ing semantic equivalences for the various units of
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language — words, phrases, and sentences — is an im-
portant problem in NLP and is being increasingly
employed to improve the performance of several
NLP applications (Madnani and Dorr, 2010), like
question-answering and machine translation.

Paraphrase identification would benefit from
a precise and broad-coverage semantic language
model. This is unfortunately difficult to obtain to its
full extent for any natural language, due to the size
of a typical lexicon and the complexity of grammat-
ical constructions. Our hypothesis is that the sim-
pler the language lexicon is, the easier it will be to
access and compare meaning of sentences. This as-
sumption is justified by the multiple attempts at con-
trolled natural languages (Schwitter, 2010) and es-
pecially simplified forms of English. One of them,
Basic English (Ogden, 1930), has been adopted by
the Wikipedia Project as the preferred language of
the Simple English Wikipedia' and its sister project
the Simple English Wiktionary?.

Our method starts with acquiring paraphrases
from the Simple English Wiktionary’s definitions.
Using those, we generate variants of both sentences
whose meanings are to be compared. Finally, we
compute traditional lexical and semantic similarity
measures on those two sets of variants to produce
features to train a classifier on the SemEval 2013
datasets in order to take the final decision.

2 Acquiring simplifying paraphrases

Simple Wiktionary word definitions are different
from usual dictionary definitions. Aside from the

"http://simple.wikipedia.org
http://simple.wiktionary.org
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simplified language, they often prefer to give a
complete sentence where the word — e.g. a verb — is
used in context, along with an explanation of what it
means. To define the verb link, Simple Wiktionary
states that If you link two or more things, you make a
connection between them (1), whereas the standard
Wiktionary uses the shorter and more cryptic To
connect two or more things.

We notice in this example that the definition
from Simple Wiktionary consists of two clauses,
linked by a subordination relation. It’s actually the
case for a lot of verb definitions: a quick statistical
study shows that 70% of these definitions are
composed of two clauses, an independent clause,
and a subordinate clause (often an adverbial clause).
One clause illustrates how the verb is used, the
other gives the explanation and the actual dictionary
definition, as in example (1). These definitions are
the basis of our method for acquiring paraphrases.

2.1 Pre-processing

We use the Stanford Parser to parse the definitions
and get a dependency graph (De Marneffe and Man-
ning, 2008). Using a few hand-written rules, we then
retrieve both parts of the definition, which we call
the word part and the defining part (see table 1 page
3 for examples). We can do this for definitions of
verbs, but also for nouns, like the giraffe is the tallest
land animal in the world to define giraffe, or adjec-
tives, like if something is bright it gives out or fills
with much light to define bright. We only provide
the details of our method for processing verb defini-
tions, as they correspond to the most complex cases,
but we proceed similarly for noun, adjective and ad-
verb definitions.

2.2 Argument matching

Word and defining parts alone are not paraphrases,
but we can obtain phrasal paraphrases from them. If
we see word part and defining part as two semanti-
cally equivalent predications, we have to identify the
two predicates with their arguments, then match ar-
guments with corresponding meaning, i.e. match ar-
guments which designate the same entity or assume
the same semantic function in both parts, as showed
in Table 2.

For verb definitions, we identify the predicates as
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you — you
link — make
0 — aconnection
0 — between
two or more things — them

Table 2: Complete matching for the definition of verb link

the main verbs in both clauses (hence /ink matching
with make in table 2) and their arguments as a POS-
filtered list of their syntactic descendants. Then,
our assumption is that every argument of the word
part predicate is present in the defining part, and
the defining part predicate can have extra arguments
(like a connection).

We define s(A, B), the score of the pair of argu-
ments (A, B), with argument A in the word part and
argument B in the defining part. We then define a
matching M as a set of such pairs, such that ev-
ery element of every possible pair of arguments is
found at most one time in M. A complete match-
ing is a matching M that matches every argument
in the word part, i.e., for each word part argument
A, there exists a pair of arguments in M which con-
tains A. Finally, we compute the matching score of
M, S(M), as the sum of scores of all pairs of M.

The score function s(A, B) is a hand-crafted lin-
ear combination of several features computed on a
pair of arguments (A, B) including:

e Raw string similarity. Sometimes the same
word is reused in the defining part.

e Having an equal/compatible dependency rela-
tion with their respective main verb.

e Relative position in clause.

e Relative depth in parsing tree. These last 3 fea-
tures assess if the two arguments play the same
syntactic role.

e Same gender and number. If different, it’s
unlikely that the two arguments designate the
same entity.

e If (A, B) is a pair (noun phrase, pronoun). We
hope to capture an anaphoric expression and its
antecedent.



Word (POS-tag) | Word part

Defining part

link (V) you link two or more things
giraffe (N) the giraffe
bright (Adj) something is bright

you make a connection between them
the tallest land animal in the world
it gives out or fills with much light

Table 1: Word part and defining part of some Simple Wiktionary definitions

e WordNet similarity (Pedersen et al., 2004). If
words belong to close synsets, they’re more
likely to identify the same entity.

2.3 Phrasal paraphrases

We compute the complete matching M which maxi-
mizes the matching score S(M). Although it is pos-
sible to enumerate all matchings, it is intractable;
therefore when predicates have more than 4 argu-
ments, we prefer constructing a best matching with a
beam search algorithm. After replacing each pair of
arguments with linked variables, and attaching un-
matched arguments to the predicates, we finally ob-
tain phrasal paraphrases of this form:

( X link Y, X make a connection between Y )

3 Paraphrasing exercise answers

3.1 Paraphrase generation and pre-ranking

Given a sentence, and our Simple Wiktionary para-
phrases (about 20,650 extracted paraphrases), we
can generate sentential paraphrases by simple syn-
tactic pattern matching —and do so recursively by
taking previous outputs as input—, with the intent
that these new sentences use increasingly more Ba-
sic English. We generate as many variants starting
from both reference answers and student answers as
we can in a fixed amount of time, as an anytime al-
gorithm would do. We prioritize substituting verbs
and adjectives over nouns, and non Basic English
words over Basic English words.

Given a student answer and reference answers, we
then use a simple Jaccard distance (on lowercased
lemmatized non-stopwords) to score the closeness
of student answer variants to reference answer vari-
ants: we measure how close the vocabulary used in
the two statements has become. More specifically,
for each reference answer A, we compute the n clos-
est variants of the student answer to A’s variant set.
In our experiments, n = 10. We finally rank the
reference answers according to the average distance
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from their n closest variants to A’s variant set and
keep the top-ranked one for our classification exper-
iment. Figure 1 illustrates the whole process.

RA2

Figure 1: Variants are generated from all reference an-
swers (RA) and the student answer (SA). For each ref-
erence answer RA, student answer variants are ranked
based on their lexical distance from the variants of RA.
The reference with the n closer variants to the student
variants is kept (here: RA1).

3.2 Classifying student answers

SemEval 2013 task 7 offers 3 problems: a 5-way
task, with 5 different answer judgements, and 3-way
and 2-way tasks, conflating more judgement cate-
gories each time. Two different corpora, Beetle and
SciEntsBank, were labeled with the 5 following la-
bels: Correct, Partially_correct_incomplete, Contra-
dictory, Irrelevant and Non_Domain, as described in
(Dzikovska et al., 2012). We see the n-way task as a
n-way classification problem. The instances of this
problem are the pairs (student answer, reference an-
Swer).

We compute for each instance the following fea-
tures: For each of the n closest variants of the stu-
dent answer to some variant of the reference answer
computed in the pre-ranking phase:

e Jaccard similarity coefficient

stopwords.

on non-

e A boolean representing if the two statements
have the same polarity or not, where polarity



is defined as the number of neg dependencies
in the Stanford Parser dependency graph.

e Number of “paraphrasing steps” necessary to
obtain the variant from a raw student answer.

e Highest WordNet similarity of their respective
nouns.

e WordNet similarity of the main verbs.
General features:

e Answer count (how many students typed this
answer), provided in the datasets.

e Length ratio between the student answer and
the closest reference answer.

e Number of (non-stop)words which appear nei-
ther in the question nor the reference answers.

We train an SVM classifier (with a one-against-one
approach to multiclass classification) on both Beetle
and SciEntsBank, for each n-way task.

3.3 Evaluation

Table 3 presents our system’s overall accuracy on the
5-way task, along with the top scores at SemEval
2013, mean scores, and baselines —majority class
and lexical overlap— described in (Dzikovska et al.,
2012).

Beetle SciEntsBank
System .
unseen answers | unseen questions

Majority 0.4010 0.4110

Lexical 0.5190 0.4130

overlap

Mean 0.5326 0.4078
ETS-run-1 0.5740 0.5320
ETS-run-2 0.7150 0.4010

Simple

Wiktio 0.5330 0.4820

Table 3: SemEval 2013 evaluation results.

Our system performs slightly better in overall ac-
curacy on Beetle unseen answers and SciEntsBank
unseen questions than both baselines and the mean
scores. While results are clearly below the best sys-
tem trained on the Beetle corpus questions, we hold
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the third best score for the 5-way task on SciEnts-
Bank unseen questions, while not fine-tuning our
system specifically for this corpus. This is rather
encouraging as to how suitable Simple Wiktionary
is as a resource to extract open-domain knowledge
from.

4 Discussion

The system we present in this paper is the first
step towards an open-domain machine reading sys-
tem capable of understanding and reasoning. Di-
rect modeling of the semantics of a full natural lan-
guage appears too difficult. We therefore decide to
first project the English language onto a simpler En-
glish, so that it is easier to model and draw infer-
ences from.

One complementary approach to a minimalistic
language model, is to accept that texts are replete
with gaps: missing information that cannot be in-
ferred by reasoning on the text alone, but require
a certain amount of background knowledge. Penas
and Hovy (2010) show that these gaps can be filled
by maintaining a background knowledge base built
from a large corpus.

Although Simple Wiktionary is not a large corpus
by any means, it can serve our purpose of acquiring
basic knowledge for assessing exercise answers, and
has the advantage to be in constant evolution and ex-
pansion, as well as interfacing very easily with the
richer Wiktionary and Wikipedia.

Our future work will be focused on enriching and
improving the robustness of our knowledge acqui-
sition step from Simple Wiktionary, as well as in-
troducing a true normalization of English to Basic
English.
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