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Abstract

This paper describes University of Leipzig’s
approach to SemEval-2013 task 2B on Sen-
timent Analysis in Twitter: message polar-
ity classification. Our system is designed to
function as a baseline, to see what we can
accomplish with well-understood and purely
data-driven lexical features, simple general-
izations as well as standard machine learning
techniques: We use one-against-one Support
Vector Machines with asymmetric cost fac-
tors and linear “kernels” as classifiers, word
uni- and bigrams as features and additionally
model negation of word uni- and bigrams in
word n-gram feature space. We consider gen-
eralizations of URLs, user names, hash tags,
repeated characters and expressions of laugh-
ter. Our method ranks 23 out of all 48 partic-
ipating systems, achieving an averaged (pos-
itive, negative) F-Score of 0.5456 and an av-
eraged (positive, negative, neutral) F-Score of
0.595, which is above median and average.

1 Introduction

In SemEval-2013’s task 2B on Sentiment Analysis
in Twitter, given a Twitter message, i.e. a tweet, the
goal is to classify whether this tweet is of positive,
negative, or neutral polarity (Wilson et al., 2013),
i.e. the task is a ternary polarity classification.

Due to Twitter’s growing popularity, the availabil-
ity of large amounts of data that go along with that
and the fact, that many people freely express their
opinion on virtually everything using Twitter, re-
search on sentiment analysis in Twitter has received
a lot of attention lately (Go et al., 2009; Pak and
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Paroubek, 2010). Language is usually used casu-
ally in Twitter and exhibits interesting properties.
Therefore, some studies specifically address certain
issues, e.g. a tweet’s length limitation of 140 char-
acters, some studies leverage certain language char-
acteristics, e.g. the presence of emoticons etc.

Davidov et al. (2010) identify various “sentiment
types” defined by Twitter hash tags (e.g. #bored)
and smileys (e.g. :S) using words, word n-grams,
punctuation marks and patterns as features. Bar-
bosa and Feng (2010) map words to more general
representations, i.e. part of speech (POS) tags and
the words’ prior subjectivity and polarity. Addi-
tionally, they count the number of re-tweets, hash
tags, replies, links etc. They then combine the out-
puts of 3 online sources of labeled but noisy and bi-
ased Twitter data into a more robust classification
model. Saif et al. (2012) also address data sparsity
via word clustering methods, i.e. semantic smooth-
ing and sentiment-topics extraction. Agarwal et al.
(2011) contrast a word unigram model, a tree ker-
nel model and a model of various features, e.g. POS
tag counts, summed up prior polarity scores, pres-
ence or absence of capitalized text, all applied to bi-
nary and ternary polarity classification. Kouloumpis
et al. (2011) show that Twitter-specific feature engi-
neering, e.g. representing the presence or absence
of abbreviations and character repetitions improves
model quality. Jiang et al. (2011) focus on target-
dependent polarity classification regarding a given
user query.

While various models and features have been pro-
posed, word n-gram models proved to be competi-
tive in many studies (Barbosa and Feng, 2010; Agar-
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wal et al., 2011; Saif et al., 2012) yet are straight-
forward to implement. Moreover, word n-gram
models do not rely on hand-crafted and generally
{genre, domain }-non-specific resources, e.g. prior
polarity dictionaries like SentiWordNet (Esuli and
Sebastiani, 2006) or Subjectivity Lexicon (Wiebe et
al., 2005). In contrast, purely data-driven word n-
gram models are domain-specific per se: they “let
the data speak for themselves”. Therefore we be-
lieve that carefully designing such a baseline using
well-understood and purely data-driven lexical fea-
tures, simple generalizations as well as standard ma-
chine learning techniques is a worthwhile endeavor.

In the next Section we describe our system. In
Section 3 we discuss its results in SemEval-2013
task 2B and finally conclude in Section 4.

2 System Description

We approach the ternary polarity classification via
one-against-one (Hsu and Lin, 2002) Support Vector
Machines (SVMs) (Vapnik, 1995; Cortes and Vap-
nik, 1995) using a linear “kernel” as implemented
by LibSVM"'. To deal with the imbalanced class dis-
tribution of positive (+), negative (—) and neutral-
or-objective (0) instances, we use asymmetric cost
factors C'y, C_, Cy that allow for penalizing false
positives and false negatives differently inside the
one-against-one SVMs. While the majority class’
Cp is set to 1.0, the minority classes” C; s are
set as shown in (1)

c _ #(0-class instances)
=37 #({+, —}-class instances)

ey

similar to Morik et al. (1999)’s suggestion.

2.1 Data

To develop our system, we use all training data avail-
able to us for training and all development data avail-
able to us for testing, after removing 75 duplicates
from the training data and 2 duplicates from the
development data. Please note that 936 tweets of
the originally provided training data and 3 tweets of
the originally provided development data were not

"http://www.csie.ntu.edu.tw/~cjlin/
libsvm/
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available at our download time2. Table 1 summa-

rizes the used data’s class distribution after duplicate
removal.

Data + — 0 Y
Training | 3,263 | 1,278 | 4,132 | 8,673
Development 384 197 472 | 1,053
3| 3,647 | 1,475 | 4,604 | 9,726

Table 1: Class distribution of positive (+), negative (—)
and neutral-or-objective (0) instances in training and de-
velopment data after duplicate removal.

For sentence segmentation and tokenization of the
data we use OpenNLP?. An example tweet of the
provided training data is shown in (1):

(1) #nacamam @naca you have to try Sky-
walk Deli on the 2nd floor of the Com-
erica building on Monroe! #bestlunche
http://instagr.am/p/Rfv-RfTI-3/.

2.2 Model Selection

To select an appropriate model, we experiment with
different feature sets (cf. Section 2.2.1) and different
combinations of generalizations (cf. Section 2.2.2).

2.2.1 Features
We consider the following feature sets:

a. word unigrams

b. word unigrams plus negation modeling for
word unigrams

c. word uni- and bigrams

d. word uni- and bigrams plus negation modeling
for word unigrams

e. word uni- and bigrams plus negation modeling
for word uni- and bigrams

Word uni- and bigrams are induced data-driven, i.e.
directly extracted from the textual data. We perform
no feature selection; neither stop words nor punc-
tuation marks are removed. We simply encode the
presence or absence of word n-grams.

*Training data was downloaded on February 21, 2013, 9:18
a.m. and development data was downloaded on February 28,
2013, 10:41 a.m. using the original download script.

*http://opennlp.apache.org



Whether a word uni- or bigram is negated, i.e.
appears inside of a negation scope (Wiegand et al.,
2010), is detected by LingScope* (Agarwal and Yu,
2010), a state-of-the-art negation scope detection
based on Conditional Random Fields (Lafferty et
al., 2001). We model the negation of word n-grams
in an augmented word n-gram feature space as de-
tailedly described in Remus (2013): In this feature
space, each word n-gram is either represented as
present ([1, 0]), absent ([0, 0]), present inside a nega-
tion scope ([0, 1]) and present both inside and out-
side a negation scope ([1, 1]).

We trained a model for each feature set and chose
the one that yields the highest accuracy: word uni-
and bigrams plus negation modeling for word uni-
and bigrams.

2.2.2 Generalizations

To account for Twitter’s typical language char-
acteristics, we consider all possible combinations
of generalizations of the following character se-
quences, inspired by (Montejo-Réez et al., 2012):

a. User names, that mark so-called mentions in a
Tweet, expressed by @username.

b. Hash tags, that mark keywords or topics in a
Tweet, expressed by #keyword.

c. URLs, that mark links to other web pages.

d. Twitpic URLs, that mark links to pictures
hosted by twitpic.com.

e. Repeated Characters, e.g. woooow. We col-
lapse characters re-occuring more than twice,
e.g. woooow is replaced by woow.

f. Expressions of laughter, e.g. hahaha. We
generalize derivatives of the “base forms”
haha, hehe, hihi and huhu. A derivative
must contain the base form and may addition-
ally contain arbitrary uppercased and lower-
cased letters at its beginning and its end. We
collapse these derivatives. E.g., hahahah and
HAHAhaha and hahaaa are all replaced by
their base form haha, eheheh and heheHE
are all replaced by hehe etc.

*nttp://sourceforge.net/projects/
lingscope/
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User names, hash tags, URLs and Twitpic URLs are
generalized by either simply removing them (mode
I) or by replacing them with a single unique token
(mode II), i.e. by forming an equivalence class. Re-
peated characters and expressions of laughter are
generalized by collapsing them as described above.

There are 1 + 22:1 (2) = 64 possible combina-
tions of generalizations including no generalization
at all. We trained a word uni- and bigram plus nega-
tion modeling for word uni- and bigrams model (cf.
Section 2.2.1) for each combination and both mode
I and mode II and chose the one that yields the high-
est accuracy: Generalization of URLs (mode I), re-
peated characters and expressions of laughter.

Although it may appear counterintuitive not to
generalize hash tags and user names, the training
data contains several re-occuring hash tags, that ac-
tually convey sentiment, e.g. #1ove, #cantwait,
#excited. Similarly, the training data con-
tains several re-occuring mentions of “celebrities”,
that may hint at sentiment which is usually as-
sociated with them, e.g. @Jjustinbieber or
@MittRomney.

3 Results & Discussion

To train our final system, we use all available train-
ing and development data (cf. Table 1). The SVM’s
“base” cost factor C' is optimized via 10-fold cross
validation, where in each fold %10th of the available
data are used for training, the remaining Vioth is used
for testing. C' values are chosen from {2 - 1073,2 -
1072,2-10742-10%2- 10,2 - 10%,2 - 103}. In-
ternally, the asymmetric cost factors C, C_, Cp (cf.
Section 2) are then set to Cy _ gy := C - Cpy _ o).

The final system is then applied to both Twit-
ter and SMS test data (cf. Table 2). Please note

Test Data + — 0 b))
Twitter | 1,572 | 601 | 1,640 | 3,813
SMS 492 | 394 | 1,208 | 2,094

Table 2: Class distribution of positive (+), negative (—)
and neutral-or-objective (0) instances in Twitter and SMS
testing data.

that we only participate in the constrained setting of
SemEval-2013 task 2B (Wilson et al., 2013) as we
did not use any additional training data.



Detailed evaluation results on Twitter test data
are shown in Table 3, results on SMS test data are
shown in Table 4. The ranks we achieved in the con-
strained only-ranking and the full constrained and
unconstrained-ranking are shown in Table 5.

Class P R F
+ 0.7307 | 0.5833 | 0.6487
- 0.5795 | 0.3577 | 0.4424
0 0.6072 | 0.8098 | 0.6940
4+, — | 0.6551 | 0.4705 | 0.5456
+,—,0 ] 0.6391 | 0.5836 | 0.5950

Table 3: Precision P, Recall R and F-Score F' of Univer-
sity of Leipzig’s approach to SemEval-2013 task 2B on
Twitter test data distinguished by classes (4, —, 0) and
averages of 4+, — and +, —, 0.

Class P R F
+ 0.5161 | 0.5854 | 0.5486
— 0.5174 | 0.3020 | 0.3814
0 0.7289 | 0.7881 | 0.7574
+,— | 0.5168 | 0.4437 | 0.4650
+,—,0 | 0.5875 | 0.5585 | 0.5625

Table 4: Precision P, Recall R and F-Score F' of Uni-
versity of Leipzig’s approach to SemEval-2013 task 2B
on SMS test data distinguished by classes (4, —, 0) and
averages of +, — and +, —, 0.

Test data | Constr. Un/constr.
Twitter 18 of 35 | 23 of 48
SMS 200f28 | 31 0f 42

Table 5: Ranks of University of Leipzig’s approach to
SemEval-2013 task 2B on Twitter and SMS test data in
the constrained only (Constr.) and the constrained and
unconstrained setting (Un/constr.).

On Twitter test data our system achieved an av-
eraged (+, —) F-Score of 0.5456, which is above
the average (0.5382) and above the median (0.5444).
Our system ranks 23 out of 48 participating systems
in the full constrained and unconstrained-ranking.
Averaging over over 4, —, 0 it yields an F-Score of
0.595.

On SMS test data our system performs quite
poorly compared to other participating systems as (i)
we did not adapt our model to the SMS data at all,
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e.g. we did not consider more appropriate or other
generalizations, and (ii) its class distribution is quite
different from our training data (cf. Table 1 vs. 2).
Our system achieved an averaged (4, —) F-Score of
0.465, which is below the average (0.5008) and be-
low the median (0.5060). Our system ranks 31 out of
42 participating systems in the full constrained and
unconstrained-ranking. Averaging over over 4, —, ()
it yields an F-Score of 0.5625.

4 Conclusion

We described University of Leipzig’s contribution
to SemEval-2013 task 2B on Sentiment Analysis in
Twitter. We approached the message polarity classi-
fication via well-understood and purely data-driven
lexical features, negation modeling, simple general-
izations as well as standard machine learning tech-
niques. Despite being designed as a baseline, our
system ranks midfield on both Twitter and SMS test
data.

As even the state-of-the-art system achieves
(4, —) averaged F-Scores of 0.6902 and 0.6846
on Twitter and SMS test data, respectively, polar-
ity classification of tweets and short messages still
proves to be a difficult task that is far from being
solved. Future enhancements of our system include
the use of more data-driven features, e.g. features
that model the distribution of abbreviations, punctu-
ation marks or capitalized text as well as fine-tuning
our generalization mechanism, e.g. by (i) general-
izing only low-frequency hash tags and usernames,
but not generalizing high-frequency ones, (ii) gener-
alizing acronyms that express laughter, such as 101
(“laughing out loud”) or rof1 (“rolling on the floor
laughing”).
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