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Abstract 
 

Umigon is developed since December 2012 as a 
web application providing a service of sentiment 
detection in tweets. It has been designed to be 
fast and scalable. Umigon also provides 
indications for additional semantic features 
present in the tweets, such as time indications or 
markers of subjectivity. Umigon is in continuous 
development, it can be tried freely at 
www.umigon.com. Its code is open sourced at: 
https://github.com/seinecle/Umigon 

 
1. General principle of operation 
Umigon belongs to the family of lexicon based 
sentiment classifiers (Davidov et al. 2010, Kouloumpis  
et al. 2011). It is specifically designed to detect 
sentiment (positive, negative or neutral) in tweets. The 
“sentiment detection engine” of Umigon consists of 4 
main parts, which are detailed below: 
- detection of semantic features in the entire tweet. 
Smileys and onomatopes are given special attention. 
- evaluation of hashtags. 
- decomposition of the tweet into a list of its n-grams 
(up to 4-grams), comparison of each n-gram with the 
terms in lexicons. In case of a match, a heuristic is 
applied. 
- final series of heuristics at the level of the entire 
tweet, taking advantage of the semantic features 
detected in the previous steps. A final, unique 
sentiment (pos, neg or neut) is ascribed to the tweet. 
 
2. The four steps of the classification engine 
We refer in footnotes to the Java classes which 
implement the processes described here.  
 
2.1   Global heuristics 

 

Smileys and onomatopes carry strong indications of 
sentiment, but also come in a variety of orthographic 
forms which require methods devoted to their 
treatment1. 
Onomatopes and exclamations often include repeated 
vowels and consonants, as in yeaaaaahhhh (repeated 
“a” and “h”), but also yeaah (repeated “a”),  or 
yeeeeaaaaah (repeated “e” and “a”). We list the most 
common exclamations and use regular expressions to 
capture the variety of forms they can assume. If such a 
form is found in the tweet, the related sentiment 
(positive or negative) is saved, and will be evaluated at 
a final stage for the global sentiment of the entire 
tweet. 
Similarly, smileys are frequently spelled in multiple 
variations: :-) can also be found as :-)) or :-)))))))) . For 
this reason here also the flexibility of regular 
expressions is used to detect spelling variations. In 
addition, we consider that a smiley positioned at the 
very end of a tweet gives an unambiguous signal as to 
the sentiment of the tweet. For instance: 
@mydearfriend You got to see Lady Gaga live, so lucky! 
Hate you :))) 
Here, whatever the negative sentiments (Hate you) 
signaled in the tweet, the final smiley has an overriding 
effect and signals the strongest sentiment in the tweet. 
For this reason smileys located in final positions are 
recorded as such. 
 
2.2   Evaluation of hashtags 

 
Hashtags are of special interest as they single out a 
semantic unit of special significance in the tweet. 
Exploiting the semantics in a hashtag faces the issue 
that a hashtag can conflate several terms, as in 
#greatstuff or #notveryexciting. Umigon applies a series 
                                                           
1 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/SentenceLevelHeuristicsPre.java 
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of heuristics matching parts of the hashtag with 
lexicons2. In the case of #notveryexciting , the starting 
letters not will be identified as one of the terms in the 
lexicon for negative terms. Similarly, the letters very 
will be identified as one of the terms present in the 
lexicon for “strength of sentiment”. exciting will be 
detected as one of the terms in the lexicon for positive 
sentiment. Taken together, not very exciting will lead 
to an evaluation of a negative sentiment for this 
hashtag. This evaluation is recorded and will be 
combined with the evaluation of other features of the 
tweet at a later stage. 
 
2.3   Decomposition in ngrams 
The text of the tweet is decomposed in a list of 
unigrams, bigrams, trigrams and quadrigrams. For 
example, the tweet This service leaves to be desired 
will be decomposed in list of the following expressions: 

“This, service, leaves, to, be, desired, This service, 
service leaves, leaves to, to be, be desired, This 
service leaves, service leaves to, leaves to be, to be 
desired, This service leaves to, service leaves to be, 
leaves to be desired” 
 

The reason for this decomposition is that some markers 
of sentiment are contained in expressions made of 
several terms. In the example above, to be desired is a 
marker of negative judgment recorded as such in the 
lexicon for negative sentiment, while desired is a 
marker of positive sentiment. 
Umigon loops through all the n-grams of the tweet and 
checks for their presence in several lexicons3.  
If an n-gram is indeed found to be listed in one of the 
lexicons, the heuristic attached to this term in this 
lexicon is executed, returning a classification (positive 
sentiment, negative sentiment, or another semantic 
feature). Heuristics attached to terms in the lexicons 
are described in detail in section 3. 
 
2.4   Post-processing: a last look at the entire tweet . 

 
 At this stage, the methods described above may have 
returned a large number of (possibly conflicting) 
sentiment categories for a single tweet. For instance, in 
the example This service leaves to be desired, the 
examination of the n-grams has returned a positive 
sentiment classification (desired) and also negative (to 
                                                           
2 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/HashtagLevelHeuristics.java 
3 
https://github.com/seinecle/Umigon/blob/master/src/java/Class
ifier/ClassifierMachine.java 

be desired). A series of heuristics adjucates which of 
the conflicting indications for sentiments should be 
retained in the end. In the case above, the co-presence 
of negative and positive sentiments without any further 
indication is resolved as the tweet being of a negative 
sentiment. If the presence of a moderator is detected 
in the tweet (such as but, even if, though), rules of a 
more complex nature are applied4. 
 
3. A focus on lexicons and heuristics 
 Four lexicons are used for sentiment analysis (number 
of terms in the lexicons in brackets): “positive tone” 
(332), “negative tone” (630), “strength of sentiment” 
(59), “negations” (45). These lexicons have been 
created manually by the inspection of thousands of 
tweets, and continue to be expanded on a regular 
basis. Note that the same term can appear in different 
lexicons (if rarely in practice). For example, the term 
fucking appears in the lexicon for negative tone and in 
the lexicon for strong sentiments. Each term in a 
lexicon is accompanied by a heuristics and a decision 
rule. 
 
3.1   Simple case from the “negative sentiments” 
lexicon: 
 

Term sadfaced 

Heuristics None 

Decision Rule 012 
 
If a tweet contains the term sadfaced, Umigon will 
directly add the code “012” (which stands for negative 
sentiment) to the tweet5. 
 
3.2   More complex case from the “positive sentiments” 
lexicon: 
 

Term Satisfied 

Heuristics 
!isImmediatelyPrecededBy
ANegation 

Decision Rule 011|012 
 
If the term satisfied is present in a tweet, the heuristics 
!isImmediatelyPrecededByANegation is applied. This s a 
method checking whether the term immediately 
                                                           
4 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/SentenceLevelHeuristicsPost.java 
5 See this class for the full list of possible classifications: 
https://github.com/seinecle/Umigon/blob/master/src/java/Class
ifier/Categories.java 
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preceding satisfied in the tweet is a negation or not6. 
This method returns a Boolean (true / false). The 
Boolean returned by this heuristics will determine the 
outcome of the decision rule. Here, the decision rule is 
a simple binary choice: codify as 011 (meaning, a 
positive sentiment) if satisfied is not preceded by a 
negation; codify it as 012 (negative sentiment) 
otherwise.  
 
3.3   Complex case from the “negative sentiments” 
lexicon: 
 

Term hard 
Heuristics !isImmediatelyPrecededBy

ANegation+++!isImmediat
elyFollowedBySpecificTer
m///work|disk 

Decision Rule A?(B?(012):011) 
 
This example shows how several heuristics (separated 
by +++) can be combined, leading to complex rules of 
decision. In this example, whenever the term hard is 
detected in a tweet, 2 heuristics are evaluated: is the 
term preceded by a negation? Is the term followed by 
specific terms – work or disk, in this case? Each of these 
heuristics returns a Boolean. The Booleans are fed into 
the interpreter of the decision rule, where A and B 
represent the 2 Booleans7. Depending on their value, 
the decision tree takes a different branch, leading to 
the selection of one codification. In the example: 
If A is false, return 011: a positive sentiment. 
Example: not hard 
If A is true and B is true, return 012: a negative 
sentiment. Example: it is hard 
If A is true and B is false, returns null: nothing (a neutral 
sentiment). 
Example: this is a hard disk 
 
While in practice it is rarely needed to write up rules of 
such complexity, they offer an extra flexibility to exploit 
the semantic features of terms in varying contexts. 
 
 

                                                           
 6 The method actually checks the two terms before, in order to 
capture cases such as “not very satisfied”, where a negative 
term is present but not immediately preceding the term under 
review. See the details of all heuristics here: 
https://github.com/seinecle/Umigon/blob/master/src/java/Heur
istics/Heuristic.java 
7 The class for the interpreter is: 
https://github.com/seinecle/Umigon/blob/master/src/java/Rule
Interpreter/Interpreter.java 

4. Performance 
 
4.1   Accuracy 
Umigon was formally evaluated in a semantic 
evaluation task proposed by SemEval-2013, the 
International Workshop on Semantic Evaluation 
(Wilson et al., 2013). The task consisted in classifying 
3,813 tweets as positive, negative or neutral in polarity 
(task B). The results: 

class Pos neg neut 
prec 0.7721 0.4407 0.6471 
rec 0.5604 0.5507 0.7579 
fscore 0.6495 0.4896 0.6981 
average(pos and neg)  0.5696 

 

   

 
For reference, the best performing participant in this 
task obtained the following results (Mohammad et al., 
2013): 

class pos  neg neut 
prec 0.8138 0.6967 0.6765 
rec 0.6673 0.604 0.8262 
fscore 0.7333 0.6471 0.7439 
average(pos and neg) 0.6902 

 

   

 
We see that Umigon had an especially poor precision 
for tweets of a negative sentiment (results greyed in 
the table). This means that Umigon failed to identify 
many negative tweets as such. One reason accounting 
for this poor performance is the definition we adopt for 
what a negative sentiment is. For example, the SemEval 
task included this negative tweet: 
“Renewed fighting rocks Syria: An early morning 
explosion rocked the flashpoint city of Deir Ezzor on 
Saturday in...” 
By design, Umigon has not been conceived to classify 
such a tweet as negative because if it contains negative 
elements of a factual nature (explosion, fighting), but 
contains no marker of a negative attitude. 
This question aside, the accuracy of Umigon should be 
improved by increasing the number of terms and 
heuristics in the lexicons, which is an ongoing process. 
 
4.2   Speed 
 
Tested on a dataset provided by sentiment140.com8, 
Umigon performs the classification of 1.6 million 
tweets in less than 15 minutes. We believe that not 
relying on Part of Speech tagging makes it a specially 

                                                           
8 http://help.sentiment140.com/for-students 
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fast solution for lexicon-based sentiment classifiers. 
The classifier engine is implemented in such a way that 
the presence of absence of n-grams in the terms lists is 
checked through look-ups on hashsets (is this n-gram 
contained in a set?), not loops through these sets. Since 
look-ups in hashsets is typically of O(1) compexity9, this 
insures that the performance of Umigon will not 
degrade even with expanded lexicons. 
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