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Abstract

The Duluth systems that participated in task
11 of SemEval–2013 carried out word sense
induction (WSI) in order to cluster Web search
results. They relied on an approach that repre-
sented Web snippets using second–order co–
occurrences. These systems were all imple-
mented using SenseClusters, a freely available
open source software package.

1 Introduction

The goal of task 11 of SemEval–2013 was to clus-
ter Web search results (Navigli and Vannella, 2013).
The test data consisted of the top 64 Google results
for each of 100 potentially ambiguous queries, for a
total of 6,400 test instances. The Web snippets re-
turned for each query were clustered and evaluated
separately, with an overall evaluation score provided
for each system.

The problem of Web page clustering is one of
the use cases envisioned for SenseClusters (Peder-
sen and Kulkarni, 2007; Pedersen, 2010a), a freely
available open source software package developed
at the University of Minnesota, Duluth starting in
2002. It supports first and second–order clustering
of contexts using both co–occurrence matrices (Pu-
randare and Pedersen, 2004; Kulkarni and Pedersen,
2005) and Latent Semantic Analysis (Landauer and
Dumais, 1997).

SenseClusters has participated in various forms at
different SenseEval and SemEval shared tasks, in-
cluding SemEval-2007 (Pedersen, 2007), SemEval-
2010 (Pedersen, 2010b) and also in an i2b2 clinical
medicine task (Pedersen, 2006).

2 Duluth System

While we refer to three Duluth systems (sys1, sys7,
and sys9), in reality these are all variations of the
same overall system. All three are based on second–
order context clustering as provided in SenseClus-
ters. The query terms are treated exactly like any
other word in the snippets, which is calledheadless
clustering in SenseClusters.

2.1 Common aspects to all systems

The input to sys1, sys7, and sys9 consists of 64
Web search snippets, each approximately 25 words
in length. All text was converted to upper case prior
to processing. The goal was to group the 64 snip-
pets for each query into k distinct clusters, where k
was automatically determined by the PK2 method of
SenseClusters (Pedersen and Kulkarni, 2006a; Ped-
ersen and Kulkarni, 2006b). Each discovered clus-
ter represents a different underlying meaning of the
given query term that resulted in those snippets be-
ing returned. Word sense induction was carried out
separately on the Web snippets associated with each
query term, meaning that the algorithm was run 100
times and clustered 64 Web page snippets each time.

In second–order context clustering, the words in
a context (i.e., Web snippet) to be clustered are re-
placed by vectors that are derived from some cor-
pus of text. The corpora used are among the main
differences in the Duluth systems. Once the words
in a context are replaced by vectors, those vectors
are averaged together to create a new representa-
tion of the context. That representation is said to
be second–orderbecause each word is represented
by its direct or first order co–occurrences, and simi-
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larities between words in the same Web snippet are
captured by the set of words that mutually co–occur
with them.

If car is represented by the vector[motor, mag-
azine, insurance], and if life is represented by the
vector[sentence, force, insurance], thencar andlife
are said to be second–order co-occurrences because
they both occur withinsurance. A second–order co-
occurrence can capture more indirect relationships
between words, and so these second–order connec-
tions tend to be more numerous and more subtle
than first–order co–occurrences (which would re-
quire thatcar and life co–occur near or adjacent to
each other in a Web snippet to establish a relation-
ship).

The co-occurrence matrix is created by finding bi-
grams that occur more than a given number of times
(this varies per system) and have a log-likelihood ra-
tio greater than 3.84.1 Then, the first word in a bi-
gram is represented in the rows of the matrix, the
second word is represented in the columns. The
value in the corresponding cell is the log-likelihood
score. This matrix is therefore not symmetric, and
has different entries forold ageandage old. Also,
any bigram that includes one or two stop words (e.g.,
to fire, running to, for the) will be excluded and not
included in the co-occurrence matrix and will not be
included in the overall sample count used for com-
puting the log–likelihood ratio. To summarize then,
words in a Web snippet are represented by the words
with which they occur in bigrams, where the context
word is the first word in the bigram, and the vector
is the set of words that follow it in bigrams.

Once the co–occurrence matrix is created, it may
be optionally reduced by Singular Value Decompo-
sition. The result of this will be a matrix with the
same number of rows prior to SVD, but a reduced
number of columns. The goal of SVD is to com-
press together columns of words with similar co–
occurrence patterns, and thereby reduce the size and
noisiness of the data. Whether the matrix is reduced
or not, then each word in each snippet to be clustered
is replaced by a vector from that matrix. A word is

1This value corresponds with a p-value of 0.05 when testing
for significance, meaning that bigrams with log-likelihood at
least equal to 3.84 have at least a 95% chance of having been
drawn from a population where their co-occurrence is not by
chance.

replaced by the row in the co-occurrence matrix to
which it corresponds. Any words that do not have
an entry in the co-occurrence matrix will not be rep-
resented. Then, the contexts are clustered using the
method of repeated bisections (Zhao and Karypis,
2004), where the number of clusters is automatically
discovered using the PK2 method.

2.2 Differences among systems

The main difference among the systems was the cor-
pora used to create their co-occurrence matrices.

The smallest corpus was used by sys7, which sim-
ply treated the 64 snippets returned by each query
as the corpus for creating a co–occurrence matrix.
Thus, each query term had a unique co-occurrence
matrix that was created from the Web snippets re-
turned by that query. This results in a very small
amount of data per query (approx. 25 words/snip-
pet * 64 snippets = 1600 words), and so bigrams
were allowed to have up to three intervening words
that were skipped (in order to increase the number
of bigrams used to create the co–occurrence ma-
trix). Bigrams were excluded if they only occurred 1
time, had a log–likelihood ratio of less than 3.84, or
were made up of one or two stop words. Even with
this more flexible definition of bigram, the resulting
co–occurrence matrices were still quite small. The
largest resulting co–occurrence matrix for any query
was 221 x 222, with 602 non–zero values (meaning
there were 602 different bigrams used as features).
The smallest of the co-occurrence matrices was 102
x 113 with 242 non–zero values. Given these small
sizes, SVD was not employed in sys7.

sys1 and sys9 used larger corpora, and therefore
required bigrams to be made up of adjacent words
that occurred 5 or more times, had log–likelihood
ratio scores of 3.84 or above, and contained no stop
words. Rather than having a different co–occurrence
matrix for each query, sys1 and sys9 created a single
co-occurrence matrix for all queries.

In sys1, all the Web snippet results for all 100
queries were combined into a single corpus. Thus,
the co–occurrence matrix was based on bigram fea-
tures found in a corpus of 6,400 Web snippets that
consisted of approximately 160,000 words. This
resulted in a co–occurrence matrix of size 771 x
952 with 1,558 non–zero values prior to SVD. After
SVD the matrix was 771 x 90, and all cells had non-
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zero values (as a result of SVD). Note that if there
are less than 3,000 columns in a co-occurrence ma-
trix, the columns are reduced down to 10% of their
original size. If there are more than 3,000 columns
then it is reduced to 300 dimensions. This follows
recommendations for SVD given for Latent Seman-
tic Analysis (Landauer and Dumais, 1997).

Rather than using task data, sys9 uses the first
10,000 paragraphs of Associated Press newswire
(APW) that appear in the English Gigaword corpus
(1st edition) (Graff and Cieri, 2003). This created
a corpus of approximately 3.6 million words which
resulted in a co-occurrence matrix prior to SVD of
9,853 x 10,995 with 43,199 non-zero values. After
SVD the co–occurrence matrix was 9,853 by 300.

3 Results

Various measures were reported by the task organiz-
ers, including F1 (F1-13), the Rand Index (RI), the
Adjusted Rand Index (ARI), and the Jaccard Coeffi-
cient. More details can be found in (Di Marco and
Navigli, 2013).

In addition we computed the paired F-Score (F-
10) (Artiles et al., 2009) as used in the 2010 Se-
mEval word sense induction task (Manandhar et al.,
2010) and the F-Measure (F-SC), which is provided
by SenseClusters. This allows for the comparison of
results from this task with the 2010 task and various
results from SenseClusters.

The organizers also provided scores for S-recall
and S-precision (Zhai et al., 2003), however for
these to be meaningful the results for each cluster
must be output in ranked order. The Duluth sys-
tems did not make a ranking distinction among the
instances in each cluster, and so these scores are not
particularly meaningful for the Duluth systems.

3.1 Comparisons to Baselines

Table 1 includes the results of the three submitted
Duluth systems, plus numerous baselines.RandX
designates a random baseline where senses were as-
signed by randomly assigning a value between 1 and
X. In word sense induction, the labels assigned to
discovered clusters are arbitrary, so a random base-
line is a convenient sanity check.MFS replicates the
most frequent sense baseline from supervised learn-
ing by simply assigning all instances for a word to

a single cluster. This is sometimes also known as
the “all–in–one” baseline.Gold are the evaluation
results when the gold standard data is provided as
input (and compared to itself).

The various baselines give us a sense of the char-
acteristics of the different evaluation measures, and
a few points emerge. We have argued previously
(Pedersen, 2010a) that any evaluation measure used
for word sense induction needs to be able to ex-
pose random baselines and distinguish them from
more systematic results. By this standard a number
of measures are found to be lacking. In SemEval–
2010 we demonstrated that the V-Measure (Rosen-
berg and Hirschberg, 2007) had an overwhelming
bias towards systems that produce larger numbers of
clusters – as a result it scored random baselines that
generated larger number of clusters (like Rand25
and Rand50) very highly.

The Rand Index (RI), which does not correct
for chance agreement, also scores random baselines
higher than both non–random systems and MFS.
The Adjusted Rand Index (ARI) corrects for chance
and scores random systems near 0, but it also scores
MFS near 0. According to ARI, random systems
and MFS perform at essentially the same level. This
is a troublesome tendency when evaluating word
sense induction systems, since MFS is often consid-
ered a reasonable baseline that provides useful re-
sults. Many words have relatively skewed distribu-
tions where they are mostly used in one sense, and
this is exactly what is approximated by MFS.

Of the measures included in Table 1, the paired
FScore (F-10), the F-Measure (F-SC), and the Jac-
card Coefficient provide results that seem most ap-
propriate for word sense induction. This is because
these measures score random baselines lower than
MFS, and that RandX scores lower than RandY,
when (X > Y). The paired FScore (F-10) and the
Jaccard Coefficient arrived at similar results, where
Rand50 received an extremely low score, and MFS
scored the highest. The F-measure (F-SC) had a
similar profile, except that the decline in evaluation
scores as X grows in RandX is somewhat less.

The paired F-Score (F-10), the F-Measure (F-SC),
and F1 (F1-13) all score MFS at approximately 54%,
which is intuitively appealing since that is the per-
centage of instances correctly clustered if all in-
stances are placed into a single cluster. However, in
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Table 1: Experimental Results
System F-10 F-SC Jaccard F1-13 RI ARI clusters size
sys1 46.53 46.90 31.79 56.83 52.18 5.75 2.5 26.5
sys7 45.89 44.03 31.03 58.78 52.04 6.78 3.0 25.2
sys9 35.56 37.21 22.24 57.02 54.63 2.59 3.3 19.8
Rand2 41.49 42.86 26.99 54.89 50.06 -0.04 2.0 32.0
Rand5 25.17 31.28 14.52 56.73 56.13 0.12 5.0 12.8
Rand10 15.05 28.71 8.18 59.67 58.10 0.02 10.0 6.4
Rand25 7.01 26.78 3.63 66.89 59.24 -0.15 23.2 2.8
Rand50 4.07 25.97 2.00 76.19 59.73 0.10 35.9 1.8
MFS 54.06 54.42 39.90 54.42 39.90 0.0 1.0 64.0
Gold 100.00 100.00 100.00 100.00 100.00 99.0 7.7 11.6

other cases these measures begin to diverge. F1 (F1-
13) tends to score random baselines even higher than
MFS, and Rand50 gets a higher score than Rand2,
which is somewhat counter intuitive. In fact accord-
ing to F1 (F1-13), Rand50 would have been the top
ranked system in task 11. It appears that F1 (F1-
13) is strongly influenced by cluster purity, but does
not penalize a system for creating too many clusters.
Thus, as the number of clusters increases, F1 (F1-
13) will consistently improve since smaller clusters
are nearly always more pure than larger ones.

Interestingly enough, the Rand Index (RI) and the
Jaccard Coefficient both score MFS at 39%. This
number does not have an intuitively appealing inter-
pretation, and thereafter RI and Jaccard diverge. RI
scores random baselines higher than MFS, whereas
the Jaccard Coefficient takes the more reasonable
path of scoring random baselines well below MFS.

3.2 Duluth Systems Evaluation

The FScore (F-10), F-Measure (F-SC), and Jaccard
Coefficient result in a comparable and consistent
view of the system results. sys1 was found to be the
most accurate, followed closely by sys7. All three
measures showed that sys9 lagged considerably.

While all three systems relied on second–order
co-occurrences, sys7 used the least amount of data,
while sys9 used the most. This shows that better re-
sults can be obtained using the Web snippets to be
clustered as the source of the co–occurrence data (as
sys1 and sys7 did) rather than larger amounts of pos-
sibly less relevant text (as sys9 did).

Each of these systems created a roughly compara-

ble number of clusters (on average, per query term,
shown in the column labeledclusters). sys7 created
2.53, while sys9 created 3.01, and sys1 found 3.32.
The average number of web snippets in the discov-
ered clusters (shown in the column labeledsize) are
likewise somewhat consistent: sys1 was the largest
at 26.5, sys7 had 25.2, and sys9 was the smallest
with 19.8. The gold standard found an average of
7.7 queries per cluster and 11.6 snippets per cluster.

After the competition sys1 and sys9 were run
without SVD. There was no significant difference in
results with or without SVD. This is consistent with
previous work that found SVD had relatively little
impact in name discrimination experiments (Peder-
sen et al., 2005).

4 Conclusions

sys7 achieved the best results by using very small
co-occurrence matrices of approximately one to two
hundred rows and columns. While small, this data
was most relevant to the task since it was made up of
the Web snippets to be clustered. sys1 increased the
size of the co–occurrence matrix to 771 x 96 by us-
ing all of the test data, but saw no increase in perfor-
mance. sys9 used the largest corpus, which resulted
in a co–occurrence matrix of 9,853 x 300, and had
the poorest results of the Duluth systems.

Sixty–four instances is a small amount of data for
clustering. In future we will augment each query
with additional unannotated web snippets that will
be discarded after clustering. Hopefully the core 64
instances that remain will be clustered more effec-
tively given the cushion provided by the extra data.
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