
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 328–338, Atlanta, Georgia, June 13-14, 2013. c©2013 Association for Computational Linguistics

Semantic Parsing Freebase: Towards Open-domain Semantic Parsing

Qingqing Cai
Temple University

Computer and Information Sciences
qingqing.cai@temple.edu

Alexander Yates
Temple University

Computer and Information Sciences
yates@temple.edu

Abstract

Existing semantic parsing research has
steadily improved accuracy on a few domains
and their corresponding databases. This paper
introduces FreeParser, a system that trains on
one domain and one set of predicate and con-
stant symbols, and then can parse sentences
for any new domain, including sentences that
refer to symbols never seen during training.
FreeParser uses a domain-independent archi-
tecture to automatically identify sentences
relevant to each new database symbol, which
it uses to supplement its manually-annotated
training data from the training domain. In
cross-domain experiments involving 23
domains, FreeParser can parse sentences for
which it has seen comparable unannotated
sentences with an F1 of 0.71.

1 Introduction

Semantic parsing is the task of converting a sentence
into a representation of its meaning, usually in a log-
ical form grounded in the symbols of some fixed
ontology or relational database (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Kate and
Mooney, 2006). A growing body of research on
semantic parsing has yielded consistent improve-
ments in parsing accuracy. Yet existing semantic
parsers have always been limited by the need for
significant amounts of manually-annotated training
data for each domain of discourse, or for each new
database. As a result, current semantic parsers have
been constrained to small domains, like answering
geography questions.

In an effort to break out of these narrowly-
constrained domains, we investigate semantic
parsers for Freebase, an online database of user-

contributed facts divided into 86 domains, includ-
ing everything from architecture to zoos. Freebase is
much larger than standard benchmark databases for
semantic parsing; for example, it contains 300 times
as many relations, and 75,000 times as many in-
stances, as the GeoQuery database. On average, the
benchmark GeoQuery dataset has 125 training sen-
tences per relation. An equivalent dataset for Free-
base would require labeling close to 40,000 training
sentences, an expensive undertaking.

The size and diversity of data in Freebase forces
us to consider a new task of open-domain seman-
tic parsing. We introduce FreeParser, which trains
on labeled examples from a select group of initial
domains. It also uses the information in Freebase
to automatically find unlabeled training sentences
from Wikipedia for every Freebase relation. Using
a self-supervised architecture, FreeParser automat-
ically labels these sentences, and then trains a se-
mantic parser for all of Freebase. The current re-
striction to Wikipedia has a downside: 44% of the
test questions in our dataset contained a word that
never appeared in our set of automatically-collected
sentences, suggesting that significant further gains
could be had by scaling to a larger corpus. However,
FreeParser is able to find correct parses for 70% of
the questions from new domains where it could find
relevant sentences in Wikipedia, at a precision of
72%.

The next section provides background on se-
mantic parsing for Freebase, and discusses related
work. Section 3 describes the main modules of the
FreeParser system. Section 4 analyzes the perfor-
mance of FreeParser on an open-domain semantic
parsing task. Section 5 concludes.

328

domain num. queries % of total

film 49 12
business 46 11
tv 34 8
location 32 8
award 32 8
people 30 7
medicine 25 6
organization 24 6
finance 21 5
book 21 5
et al. 89 22

total 403 100

Table 1: Breakdown of our Freebase data set into do-
mains. Several questions used symbols from multiple
Freebase domains, in which cases human judges selected
the best domain they could for that question’s category.

2 Background and Previous Work

2.1 Freebase Dataset

Freebase is a free, online, user-contributed, rela-
tional database (www.freebase.com) covering many
different domains of knowledge. The full schema
and contents are available for download.

Freebase has a number of advantages for build-
ing an open-domain semantic parser. Most obvi-
ously, it provides a much tougher test for seman-
tic parsing than traditional benchmark databases like
GeoQuery. It also provides a testbed for semantic
parsing across domains. As a reference point, the
GeoQuery database contains a single domain (ge-
ography), 8 relations, and 698 total instances. The
“Freebase Commons” subset of Freebase, which is
our focus, consists of 86 domains, an average of 25
relations per domain (total of 2134 relations), and
615,000 known instances per domain (53 million in-
stances total). By dividing Freebase into different
sub-databases according to domain, we can readily
test the portability of our parser across domains, and
its ability to handle relations and symbols that never
occur in manually-labeled training data.

Our dataset contains 403 questions and a meaning
representation for each question, written in a variant
of lambda calculus1. We believe the dataset in it-
self is an important contribution to the field, as it

1The data is available from the second author’s webpage.

Examples

1. What are the neighborhoods in New
York City?
λx . neighborhoods(new york, x)

2. How many countries use the rupee?
count(x) . countries used(rupee, x)

3. How many Peabody Award winners are
there?
count(x) . ∃y . award honor(y) ∧

award winner(y, x) ∧
award(y, peabody award)

Figure 1: Example questions with their logical forms.

provides a testbed for semantic parsing across mul-
tiple domains. Several examples are listed in Fig. 1,
and Table 1 provides a breakdown of the domains in
our data. The questions were provided by two na-
tive English speakers, one high school student and
one computer science undergraduate student. Each
contributor was introduced to the Freebase website,
and asked to come up with English questions that
they would like to have answered. No restrictions
were placed on the type of questions they should
produce, except that they should produce questions
for multiple domains. 23 domains are represented in
the data set. Inspection of the dataset indicates that
most questions have relatively simple and regular
syntax, compared with the more complex construc-
tions observed in datasets like GeoQuery. Collecting
more complex questions for open-domain tests is an
ongoing project, but the existing dataset is already
a significant challenge for current semantic parsing
learning algorithms.

2.2 Challenges for a Freebase Semantic Parser

To provide a benchmark for comparison, we applied
the PCCG-based semantic parser called UBL, de-
veloped by Kwiatkowski et al. (2010). Source code
for UBL is freely available. Its authors found that it
achieves results competitive with the state-of-the-art
on a variety of standard semantic parsing data sets,
including Geo250 English (0.85 F1). Using a fixed
CCG grammar and a procedure based on unification
in second-order logic, UBL learns a lexicon Λ from
the training data which includes entries like:

329

Example Lexical Entries

New York City ` NP : new york

neighborhoods in `
S\NP/NP : λxλy.neighborhoods(x, y)

Example CCG Grammar Rules

X/Y : f Y : g ⇒ X : f(g)
Y : g X\Y : f ⇒ X : f(g)

Using Λ, UBL selects a logical form z for a sen-
tence S by selecting the z with the most likely parse
derivations y: h(S) = arg maxz

∑
y p(y, z|x; θ,Λ).

The probabilistic model is a log-linear model with
features for lexical entries used in the parse, as
well as indicator features for relation-argument pairs
in the logical form, to capture selectional prefer-
ences. Inference (parsing) and parameter estimation
are driven by standard dynamic programming algo-
rithms (Clark and Curran, 2007; Wilks et al., 1990),
using a context-free, combinatory categorial gram-
mar that includes rules for forward application and
composition.

In a standard experimental setup on our dataset,
UBL provides an F1 of 0.35. We took a random split
of 70% of the data for training, 30% for test. An
F1 of 0.35 is significantly worse than UBL’s perfor-
mance on GeoQuery data (F1 of 0.85) but within the
bounds of reason, given that our data has over 200
relation symbols that need to be learned using less
than 300 training sentences, compared with the 8 re-
lations and 250 sentences that make up the Geo250
English dataset.

However, UBL is not designed for open-domain
semantic parsing, and after training on the training
set above, it is not be able to handle questions for
any of the remaining 63 domains in Freebase. In
open-domain tests, it achieves an F1 of 0.0, and for
most sentences, it cannot produce a parse. As one
example, we created a test set from the business
and finance domains, and separated the remain-
ing domains for training. Every test example has a
predicate symbol that has never been observed be-
fore in training. The F1 of 0.0 on this dataset is not a
fault of UBL, but rather it shows the difficulty of the
task. Porting a system across domains often results
in substantial loss of accuracy for many natural lan-
guage processing tasks (Huang et al., 2011), but usu-
ally the drop in accuracy is no more than 10-20%.
Open-domain semantic parsing is an even starker

challenge; it involves not just new natural language
words in the new domains, but also new database
symbols, which existing technology cannot handle.

2.3 Previous Work
Krishnamurthy and Mitchell (2012) also create a se-
mantic parser for Freebase, covering 77 of Free-
base’s over 2000 relations. Like our work, their
technique uses distant supervision to drive training
over a collection of sentences gathered from the
Web, and they do not require any manually-labeled
training data. However, their technique does require
manual specification of rules that construct CCG
lexical entries from dependency parses. In compar-
ison, we fully automate the process of constructing
CCG lexical entries for the semantic parser by mak-
ing it a learning task. We test our results on a dataset
of over 400 questions covering over 200 Freebase re-
lations, a more extensive test than the 50 questions
used by Krishnamurthy and Mitchell.

Yahya et al. (2012) report on a system for
translating natural language queries to SPARQL
queries over the Yago2 (Hoffart et al., 2013)
database. Yago2 consists of information extracted
from Wikipedia, WordNet, and other resources us-
ing manually-defined extraction patterns. The man-
ual extraction patterns pre-define a link between nat-
ural language terms and Yago2 relations. Our tech-
niques automate the process of identifying matches
between textual phrases and database relation sym-
bols, in order to scale up to databases with more
relations, like Freebase. A more minor difference
between Yahya et al.’s work and ours is that their
system handles SPARQL queries, which do not han-
dle aggregation queries like argmax and count.
We rely on an existing semantic parsing technology
to learn the language that will translate into such
aggregation queries. On the other hand, their test
questions involve more conjunctions and complex
semantics than ours. Developing a dataset with more
complicated semantics in the queries is part of our
ongoing efforts.

Goldwasser et al.’s self-supervised, grounded se-
mantic parser (2011) relies on co-training between
two different semantic parsing models, one being a
simple machine-translation model and the other a
more complex structured-prediction model. They
achieve an impressive F1 of 0.66 on the bench-
mark GeoQuery 250 (English) dataset, compared
with state-of-the-art supervised models that achieve

330

accuracies around 0.85. Unlike semantic parsers
for Freebase, Goldwasser et al.’s work assumes that
a dataset of unlabeled geography questions already
exists, for use in unsupervised training. FreeParser
answers orthogonal questions: how can we auto-
matically acquire a dataset containing the right key-
words and phrases, given only the database itself,
and how can we ensure that the acquired sentences
are relevant to the relations in the database, with-
out manual supervision? Also, unlike Goldwasser
et al.’s experiments, FreeParser is tested in a signif-
icantly more challenging setting, with far more do-
mains, relations, and entities to be learned.

Many supervised learning frameworks have been
applied, including inductive logic programming
(Zelle and Mooney, 1996; Thompson and Mooney,
1999; Thompson and Mooney, 2003), support vec-
tor machine-based kernel approaches (Kate et al.,
2005; Kate and Mooney, 2006; Kate and Mooney,
2007), machine translation-style synchronous gram-
mars (Wong and Mooney, 2007), and context-
free grammar-based approaches like probabilistic
Combinatory Categorial Grammar (Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Zettlemoyer and Collins, 2009; Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011; Lu et al., 2008) and
discriminative reranking (Ge and Mooney, 2006; Ge
and Mooney, 2009). These approaches have yielded
steady improvements on standard test sets like Geo-
Query, but are difficult to apply to Freebase because
of their built-in assumption that relation symbols
will be observed during training.

There has been a recent push towards develop-
ing techniques which reduce the annotation cost or
the data complexity of the models. Models have
been developed which can handle some ambiguity
in terms of which logical form is the correct label
for each training sentence (Chen et al., 2010; Liang
et al., 2009). Another set of approaches has investi-
gated the case where no logical forms are provided,
but instead some form of feedback or response from
the world is used as evidence for what the correct
logical form must have been (Clarke et al., 2010;
Liang et al., 2011; Artzi and Zettlemoyer, 2011).
While such techniques are important, they can only
reduce the annotation cost per domain, and annota-
tion efforts would still be required for each new do-
main that contains new database symbols. The goal
of the Freebase semantic parser, in contrast, is to

program actor role

Party Down Ryan Hansen Kyle Bradway

structure owner

CN Tower Canada Lands Co.

particle sub-particle number

Proton Up Quark 2

TV domain

cast member table

Architecture domain

ownership table

Physics domain

particle composition

Figure 2: Example Freebase relations (tables) and in-
stances for three domains.

port to all domains automatically, without any new
manually-labeled data per domain.

3 FreeParser

We introduce FreeParser, an automated system for
converting natural language sentences into represen-
tations of their meaning, where the relation and con-
stant symbols for the meaning representations are
taken from Freebase. FreeParser’s modules are de-
scribed below.
Sentence Retrieval Engine: This module con-
structs keyword queries for sentences that are likely
to express the same relationships as the ones ob-
served in Freebase. It uses an index over a large
corpus, currently a snapshot of English Wikipedia,
to identify sentences that match the query. Each sen-
tence, along with the Freebase relation r and query
q that generated it, is then fed to the Auto-Labeler.
Auto-Labeler: The Auto-Labeler uses knowledge
of the relation and query for a sentence to automati-
cally generate a simple logical form for the sentence.
The automatically-labeled sentences are then sent to
the Assessor.
Assessor: Using a set of domain-independent fea-
tures, the Assessor filters out sentences that are un-
suitable for training the semantic parser. These in-
clude sentences that are too long or complex, and
sentences where the label from the Auto-Labeler ap-
pears to be incorrect. The sentences that pass this
filter are added to the training data for FreeParser’s
semantic parser.
Open-domain Regularizer: FreeParser relies on an
existing semantic parser, but with a novel regularizer
that helps it learn more appropriate lexical entries for
domain-independent function words.

3.1 Sentence Retrieval Engine
The Sentence Retrieval Engine is FreeParser’s open-
domain technique for retrieving sentences from a

331

Input: Freebase relation r, unlabeled corpus C
Output: Sent, a set of sentences relevant to r
1. Initialize Sent← ∅
2. E ←M random instances from r,

each projected onto two random attributes
3. E′ ← N pairs (e1, e2) ∈ E with smallest
relation-count(e1, e2)

4. For each (e1, e2) ∈ E′:
S2← {sentences in C containing e1 and e2}
S1← {sents containing e2, in docs with e1}
Sent← Sent ∪ S1 ∪ S2

5. Return Sent

Figure 3: The Sentence Retrieval Engine algorithm

corpus that are relevant to a particular relation in the
database.

Definition relevance: We say that a sentence s is
relevant to a relation r in Freebase if there exist
database symbols a1, . . . , ak such that r(a1, . . . , ak)
appears in Freebase, and r(a1, . . . , ak) forms part of
the meaning of s, if the meaning were written in a
logical form.

For example, for the cast member relation in the
Freebase sample shown in Figure 2, the sentence

Hansen also played Kyle Bradway on the
Starz show Party Down.

would be relevant, since the sentence expresses a
known instance of cast member.

Of course, the corpus given as input to the Sen-
tence Retrieval Engine contains only sentences, not
the logical forms required to determine relevance ac-
cording to our definition. FreeParser’s strategy is
to generate keyword queries that list several named
entities that belong to a particular relation. For in-
stance, one query that the Sentence Retrieval Engine
might generate for the cast member relation is
“Ryan Hansen Kyle Bradway,” and another might
be “Kyle Bradway Party Down.”

Figure 3 shows the algorithm for the Sentence
Retrieval Engine. In our experiments, we create
M = 1000 candidate entity pairs, and we select
N = 50 for queries. We use the open-source Apache
Lucene software for constructing an index over the
Wikipedia corpus and retrieving relevant sentences.

We have found that selecting good queries is in
fact quite tricky, and our experiments in Section 4.4

indicate how badly things can go wrong if it is not
done carefully. Two important lessons stand out:
First, for reasonable recall, we limit queries to just
one or two names. Queries with two names (we call
these 2-entity queries) are very often highly relevant,
but there are not enough sentences in Wikipedia that
match such queries for all relations. We therefore
also include queries (which we refer to as 1-entity
queries) that first identify Wikipedia articles for one
name from a relation, such as articles that mention
“Ryan Hansen”, and then within this resulting docu-
ment set, we select sentences that match a second
name, such as “Party Down”. The resulting sen-
tences therefore always contain one name from the
relation, and appear near (within the same document
as) a second name. These sentences are noisier than
sentences selected with two names, but there are far
more matches of such sentences within Wikipedia.

The second lesson for sentence retrieval is that we
need to select queries that are not ambiguous. For
instance, “James Cameron Avatar” retrieves many
sentences for the relation directed by. Un-
fortunately, this same query also produces many
sentences for the relations written by and won
award for. The two entities are not enough to un-
ambiguously identify the relationship between them.
To combat this problem, FreeParser scores candidate
queries according to relation-count, the number of
relations in Freebase that hold between the names
in the query, and keeps the top-N least ambiguous
queries, breaking ties randomly.

3.2 Auto-Labeler
The Auto-Labeler automatically generates a log-
ical form label for every sentence in our data
set. It provides a form of “distant supervision”
(Bunescu and Mooney, 2007). As an example, if
the sentence above were generated from the cast
member relation using the query “Hansen Brad-
way”, and “Hansen” and “Bradway” are names
for the database symbols Ryan Hansen and
Kyle Bradway, then the Auto-Labeler produces
∃pcast member(p,Ryan Hansen,Kyle Bradway) as a la-
bel for the sentence. The existentially quantified p
variable is necessary to supply enough arguments for
the cast member relation.

For the general case, let s be a sentence generated
from a relation r of arity n via queries involving the
entities e = (e1, . . . , em), and let a = (a1, . . . , am)
be the sequence of attribute indices of r such that

332

Input: auto-labeled sentences S for relation r
Output: S′ ⊂ S, a high-quality training dataset

1. For each (s, l) ∈ S:
C[s, l]← complexity-score(s, l)

2. Sort S in descending order according to C
3. T ← top 100 examples from S
4. CW ← critical-words(T)
5. result← ∅
6. For each cw ∈ CW :
Scw ← top two (s, l) ∈ (S − result)

such that s contains cw
result← result ∪ Scw

7. Return result

Figure 4: The Assessor algorithm

ei is a value for r’s attribute ai. The Auto-Labeler
produces the following logical form for s:

∃v1, . . . vn s.t. r(v1, . . . , vn)∧
va1 = e1 ∧ . . . ∧ vam = em

3.3 Assessor
Automatically retrieving training sentences from an
unlabeled corpus is a noisy process. In order to
improve its precision, FreeParser automatically as-
sesses whether each sentence from the Sentence Re-
trieval Engine is relevant and useful for training. Its
goal is to select, for each relation r, a set of sen-
tences that are all structurally simple; that include a
variety of ways of expressing r in English; and that
do not include any sentences about other relations
r′. The full Assessor algorithm is given in Figure 4.

The Assessor uses two sources of evidence. The
first is the complexity of the sentence. After ex-
perimenting with numerous features for measur-
ing complexity, we have found that a few types
of word counts are the most helpful. Specifically,
the most helpful features include: the number of
words between two named entities (for two-entity
queries), the number of words before the named
entity that was part of the query (for one-entity
queries), and the total number of non-named-entity,
non-stopword words in the sentence. Our imple-
mentation uses a list of 200 common stopwords. We
trained a maximum-entropy classifier over the com-
plexity features to predict the probability that a sen-
tence is simple enough for training. We manually

labeled a small sample of 50 sentences, which were
retrieved for relations not found in any of our test
sentences. Sentences that truly expressed the rela-
tions in the logical form and no other relation were
labeled as positive, and all others were labeled neg-
ative. The Assessor uses the probability from this
classifier to rank all sentences for a relation, and se-
lects the top 100 sentences for further processing.

Complexity statistics alone are not sufficient for
selecting good training sentences. For instance,
“‘Being Spiderman is a dream come true,’ says An-
drew Garfield” is a short sentence mentioning two
entities that participate in the acted in relation.
However, none of the words in the sentence are par-
ticularly indicative of acted in, and if FreeParser
were to use this as a training sentence, it would most
likely learn a wrong lexical entry.

The Assessor additionally weeds out sentences
which do not include words strongly associated with
a database relation. Previous work has used statisti-
cal machine translation models like IBM Model 1
(Brown et al., 1993) as a method for initially de-
termining which words should be associated with
which database symbols. After experimenting with
this and other models, as implemented in GIZA++
(Och and Ney, 2003), we have found that a simpler
procedure is more effective for finding the words
which are most indicative of a database relation.
Taking the set T of top 100 sentences for r from the
complexity ranker, we preprocess the sentences by
discarding stopwords and applying stemming. We
then count all the remaining word types v ∈ V
appearing in T , and rank them by frequency. We
select the top K as word stems that are highly in-
dicative of relation r; we call these word stems the
critical words for r. For example, for the relation
date founded, this technique produces the crit-
ical words “found,” “establish,” and “settl,” among
others. Sentences which do not contain some vari-
ant of one of these critical words are unlikely to be
good training examples. To obtain a set of diverse
but relevant sentences, the Assessor selects at most
two sentences for each of the K critical words, tak-
ing care not to select any sentence twice. In practice
we found that using more than 2 sentences per criti-
cal word has no effect on parsing accuracy, but slows
the parser training procedure significantly. We tuned
K on development data, and set it to K = 7.

333

Example lexical entries for “is” learned by UBL

S|NP : λx . religion(x)
S|NP |NP : λxλy . person(x)∧

appearance type(x, newscaster)
S|NP |NP : λxλy . brand(x, y)∧

company brand relationship(x)

Table 2: Overly-specific lexical entries for the function
word “is,” as learned by a state-of-the-art PCCG se-
mantic parser on our Freebase data set. All entries
shown have significant positive weight in the learned lex-
icon.

3.4 Initializing the Lexicon for Learning a
Semantic Parser

Existing semantic parsing technology requires some
initial knowledge in order to learn a full parser. Typ-
ically, this knowledge includes lexical entries for
named entities and the database symbols to which
they correspond, a small number of additional en-
tries for important function words, and a procedure
for initializing the weights for learned lexical en-
tries. For instance, UBL uses GIZA++ (Och and
Ney, 2003) to initialize the weight of learned lexi-
cal entries.

FreeParser includes initial lexical entries for all
named entities in our dataset, as well as 29 hand-
crafted lexical entries for the words “who,” “what,”
“when,” and “where.” These helped to combat
the problem of learning a semantic parser from
small numbers of questions and large numbers of
automatically-retrieved sentences that were almost
all declarative statements rather than questions. Fol-
lowing Kwiatkowski et al., these hand-crafted lexi-
cal entries are assigned a fixed positive initial weight
of 10. We found the following procedure more effec-
tive than GIZA++ for initializing the lexicon weights
for learned lexical entries in practice: for each crit-
ical word and relation pair (v, r) in the sentences
from the Assessor, we found a maximum likelihood
estimate of P (v|r), the probability of observing the
critical word v, given that a sentence expresses the
relation r. We then created initial learned lexical en-
tries that pair v and r, with a weight equal to P (v|r).

3.5 New Learning Component for Semantic
Parsing: An Open-Domain Regularizer

Training FreeParser’s semantic parsing component
on the automatically-labeled sentences, as the sys-

tem has been described thus far, results in disap-
pointing performance. This is in large part because
the UBL semantic parser learns highly domain-
specific meanings for function words. Table 2 shows
example lexical entries learned for the word “is”.
These types of learned meanings are the rule, not
the exception, in the existing semantic parser. For
single-domain tests, they pose no particular diffi-
culties, even though intuitively they are bad repre-
sentations of the meaning of a function word. For
open-domain semantic parsing, however, it becomes
nearly impossible to parse sentences correctly on
a new domain, if the only meanings for function
words include relations from training domains.

To overcome this problem, we devised a novel
regularization technique to encourage the parser to
learn domain-independent meanings for function
words. Unlike most of FreeParser, this technique
is specific to the log-linear CCG semantic pars-
ing technique used by Kwiatkowski et al. How-
ever, similar mechanisms could potentially be de-
vised for other semantic parsing frameworks. The
Kwiatkowski et al. model includes a feature func-
tion fw,l for every lexical entry mapping a wordw to
a logical form l. Our novel regularizer R(·) over the
parameters θ, which we call an open-domain regu-
larizer, penalizes parameters for lexical entries map-
ping function words to any domain-specific lambda
calculus expression. Formally, let F be a set of func-
tion words, and P a set of domain-specific predi-
cates from Freebase:

R(θ) =
∑
w,l

{
θ2
w,l if w ∈ F ∧ ∃p ∈ P.p ∈ l

0 otherwise.

In our implementation, we added all relations in
Freebase that are not part of its common domain to
P , and collected a set of 282 common English func-
tion words for F .

4 Experiments

We now test FreeParser’s ability to provide semantic
parses in domains where it has seen no manually-
labeled training data. We also empirically analyze
the design decisions for FreeParser.

4.1 Experimental Setup
All of our experiments are conducted on the Free-
base dataset described in Section 2.1. To create

334

Q: What is ‘Big Daddy’ rated?
Movie ratings are stored as special codes in Free-
base, and are rarely observed ‘as is’ in text.

Q: Who is the CEO of Apple?
Wikipedia regularly uses the full form ‘Chief Ex-
ecutive Officer’; no retrieved sentence had ‘CEO’
together with the executive’s name and company
name.

Q: When did Jack Albertson die?
Many sentences contain “person died on date”, but
no retrieved sentence contained the morphological
variant “(did) die.”

Table 3: Example infeasible questions, and why
FreeParser had difficulty finding sentences in Wikipedia
that contain the relevant keywords from the question.

manually-labeled training and test sets for domain
adaptation, we divide the dataset into three groups
of nearly-equal size by placing similar domains to-
gether in the same group. No domain has ques-
tions in more than one group. We then perform 3-
fold cross-validation across these three groups. We
run FreeParser’s Sentence Retrieval Engine, Auto-
Labeler, and Assessor for all relations that appear
in our dataset, and we include the automatically-
labeled data in the training data.

4.2 Testing the Sentence Retrieval Engine

179 of the 403 questions (44%) in our dataset in-
cluded critical words which could not be found us-
ing the Sentence Retrieval Engine’s queries over
Wikipedia. Table 3 lists example infeasible ques-
tions. One obvious improvement is to open the re-
trieval engine to sentences from the Web, for greater
recall; this is an important task for future work. For
now, this is FreeParser’s biggest source of errors.
However, note that without this component, the se-
mantic parser parses none of the test data correctly.

4.3 Open-domain semantic parsing tests

We now turn to an experiment that assesses the full
FreeParser system on open-domain semantic pars-
ing. For the current experiments, we concentrate
on the 224 questions (56% of the full dataset) for
which all of the words (except named entities) could
be found in at least one of the auto-labeled sentences
returned by the Sentence Retrieval Engine. We call

these 224 questions the feasible questions. For the
remaining infeasible questions, FreeParser almost
never produces a correct logical form.

Figure 5 shows FreeParser’s performance on fea-
sible questions in all test domains, as well as for each
of the seven most-common test domains. FreeParser
performs quite well, achieving an overall F1 of
0.71, which represents a huge improvement over the
F1 of 0.0 for the supervised UBL semantic parser
in a domain adaptation setting. An unsupervised
parser, which uses only the initial lexical entries
from FreeParser and the auto-labeled training data,
achieves an F1 of 0.43. Precision and recall differ-
ences between FreeParser and these two baselines
are statistically significant (p < 0.01) using Fisher’s
exact test. Including both feasible and infeasible
questions, FreeParser’s F1 is 0.37 because of the low
recall on infeasible questions, but as more unlabeled
text becomes available to FreeParser, it should have
fewer and fewer infeasible questions.

4.4 Testing Critical Design Components
We tested FreeParser with different choices for key
parts of the design, to measure their impact. Ta-
ble 4 presents precision, recall, and F1 scores for
four variations of FreeParser, where each variation
is missing a critical component of the design. In the
first variation, the Sentence Retrieval Engine only
issues two-entity queries; it is missing the ability to
issue the less-precise single-entity queries. In the
second variation, the Assessor uses only the critical
words to select sentences for training; it is missing
the ability to rank sentences based on their complex-
ity. In the third variation, the Assessor selects the
top 2K, or 14, sentences based on the complexity
ranking; it ignores the critical words test. Finally,
the last variation shows FreeParser’s performance
when UBL’s training procedure has not been mod-
ified with the open-domain regularizer.

Deleting any one of these critical design ele-
ments substantially degrades FreeParser’s perfor-
mance, but the 1-entity queries appear to be the most
critical design choice, followed by the critical words
test and open-domain regularizer. Removing the 1-
entity queries surprisingly hurts both precision and
recall. The 2-entity queries do tend to retrieve bet-
ter sentences on average than 1-entity queries, but
because they retrieve so few, the Assessor has more
difficulty selecting good critical words.

Error analysis showed that incorrect or missing

335

.72
.68

.29

.82

.93

.57

.89

.27

.70 .68

.27

.82 .81

.53

.67

.27

.71 .68

.28

.82
.87

.55

.76

.27

.00

.20

.40

.60

.80

1.00

all (224) film (31) tv (22) location (22) medicine(16) business (15) people (12) award (11)

Open-Domain Semantic Parsing on Feasible Questions

precision recall f1

Figure 5: FreeParser achieves an overall F1 of 0.71, in a test where every correct logical form has some element
never seen in manually-labeled training data. Results across different domains vary, but FreeParser performs well
in a variety of domains. Numbers next to domain labels indicate the number of feasible test questions. Results for
“all” domains are the micro-average across our three cross-validation folds.

Model P R F1

−1-entity queries .29 .29 .29
−complexity ranking .59 .53 .56
−critical words test .47 .41 .44
−open-domain regul. .50 .45 .47
FreeParser .72 .70 .71

Table 4: FreeParser compared with variations that are
missing critical design components. All precision and
recall differences between the full system and its varia-
tions are statistically significant (p < 0.01) using a two-
tailed Fisher’s exact test.

lexical entries for critical words were responsible for
most (68%) of the 67 incorrect or missing parses for
feasible test questions. Many of the incorrect en-
tries mapped critical words like “directed” to related
but incorrect predicates, like written by. Miss-
ing lexical entries were often because the Assessor
incorrectly weeded out good auto-labeled examples.
The remaining 32% of the errors were mostly due to
complex syntax in the questions, or vague questions
that require significant reasoning to come up with a
valid interpretation.

5 Conclusion and Future Work

Most work on semantic parsing focuses on improv-
ing parser accuracy on a small number of relations in
a single domain. FreeParser is an exploration of the
possibility of automated semantic parsing for arbi-

trary domains. Among the lessons from our experi-
ence in designing FreeParser, these stand out: First,
finding training sentences that cover all of the dif-
ferent ways a person may refer to a database ele-
ment is difficult, and requires carefully constructed
retrieval mechanisms for sufficient recall. Second,
simple measures of sentence complexity and cooc-
currence statistics are effective techniques for iden-
tifying good training sentences. And third, standard
semantic parsing algorithms require modification for
open-domain semantic parsing, to enforce that func-
tion words are not mapped to domain-specific logi-
cal forms. We report results that help in understand-
ing FreeParser’s current strengths and weaknesses,
and that also serve as a baseline for future open-
domain semantic parsers.

Significant work remains: ideally, a system would
be able to incorporate relational data from multi-
ple schemas, and could leverage much larger cor-
pora for learning alignments. Also, FreeParser cur-
rently maps English words only to individual Free-
base symbols; more sophisticated algorithms and
representations are necessary for learning how to
map to conjunctions, disjunctions, and more com-
plex combinations of Freebase symbols.

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
1218692. We wish to thank Sophia Kohlhaas and
Ragine Williams for providing data for the project.

336

References

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping
Semantic Parsers from Conversations. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

P. F. Brown, S. D. Pietra, V. J. D. Pietra, and R. L. Mercer.
1993. The mathematics of statistical machine transla-
tion: Parameter estimation. Computational Linguis-
tics, 19(2):263–311.

Razvan Bunescu and Raymond Mooney. 2007. Learning
to extract relations from the web using minimal super-
vision. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics (ACL-
07).

David L. Chen, Joohyun Kim, and Raymond J. Mooney.
2010. Training a Multilingual Sportscaster: Using
Perceptual Context to Learn Language. Journal of Ar-
tificial Intelligence Research, 37:397–435.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with ccg and log-
linear models. Computational Linguistics, 33(4):493–
552.

J. Clarke, D. Goldwasser, M. Chang, and D. Roth.
2010. Driving semantic parsing from the world’s re-
sponse. In Computational Natural Language Learn-
ing (CoNLL).

Ruifang Ge and Raymond J. Mooney. 2006. Discrimina-
tive Reranking for Semantic Parsing. In Proceedings
of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associ-
ation for Computational Linguistics (COLING/ACL-
06).

Ruifang Ge and Raymond J. Mooney. 2009. Learning a
Compositional Semantic Parser using an Existing Syn-
tactic Parser. In Joint Conference of the 47th Annual
Meeting of the Association for Computational Linguis-
tics and the 4th International Joint Conference on Nat-
ural Language Processing of the Asian Federation of
Natural Language Processing (ACL-IJCNLP 2009).

D. Goldwasser, R. Reichart, J. Clarke, and D. Roth.
2011. Confidence driven unsupervised semantic pars-
ing. In Association for Computational Linguistics
(ACL).

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. YAGO2: A Spa-
tially and Temporally Enhanced Knowledge Base from
Wikipedia. Artificial Intelligence, 194:28–61, Jan-
uary.

Fei Huang, Alexander Yates, Arun Ahuja, and Doug
Downey. 2011. Language Models as Representations
for Weakly Supervised NLP Tasks. In Conference on
Computational Natural Language Learning (CoNLL).

Rohit J. Kate and Raymond J. Mooney. 2006. Using
String-Kernels for Learning Semantic Parsers. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of
the ACL.

Rohit J. Kate and Raymond J. Mooney. 2007. Semi-
Supervised Learning for Semantic Parsing using Sup-
port Vector Machines. In Proceedings of the Human
Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, Short Papers (NAACL/HLT-2007).

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to Transform Natural to Formal Lan-
guages. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05).

Jayant Krishnamurthy and Tom Mitchell. 2012. Weakly
Supervised Training of Semantic Parsers. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing Probabilis-
tic CCG Grammars from Logical Form with Higher-
order Unification. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,
and Mark Steedman. 2011. Lexical Generalization
in CCG Grammar Induction for Semantic Parsing. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

P. Liang, M. I. Jordan, and D. Klein. 2009. Learning
semantic correspondences with less supervision. In
Association for Computational Linguistics and Inter-
national Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP).

P. Liang, M. I. Jordan, and D. Klein. 2011. Learning
dependency-based compositional semantics. In Asso-
ciation for Computational Linguistics (ACL).

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S. Zettle-
moyer. 2008. A Generative Model for Parsing Natural
Language to Meaning Representations. In Proceed-
ings of The Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

C.A. Thompson and R.J. Mooney. 1999. Automatic con-
struction of semantic lexicons for learning natural lan-
guage interfaces. In Proc. 16th National Conference
on Artificial Intelligence (AAAI-99), pages 487–493.

Cynthia A. Thompson and Raymond J. Mooney. 2003.
Acquiring Word-Meaning Mappings for Natural Lan-
guage Interfaces. Journal of Artificial Intelligence Re-
search (JAIR), 18:1–44.

337

Y. Wilks, D. Fass, C. Guo, J. MacDonald, T. Plate, and
B. Slator. 1990. Providing Machine Tractable Dictio-
nary Tools. MIT Press.

Yuk Wah Wong and Raymond J. Mooney. 2007. Learn-
ing Synchronous Grammars for Semantic Parsing with
Lambda Calculus. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguis-
tics (ACL-2007).

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
Maya Ramanath, Volker Tresp, and Gerhard Weikum.
2012. Natural Language Questions for the Web of
Data. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to Parse Database Queries using Inductive Logic
Programming. In AAAI/IAAI, pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Grammars.
In Proceedings of the Twenty First Conference on Un-
certainty in Artificial Intelligence (UAI).

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line Learning of Relaxed CCG Grammars for Parsing
to Logical Form. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL).

Luke S. Zettlemoyer and Michael Collins. 2009. Learn-
ing Context-dependent Mappings from Sentences to
Logical Form. In Proceedings of the Joint Conference
of the Association for Computational Linguistics and
International Joint Conference on Natural Language
Processing (ACL-IJCNLP).

338

