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Abstract

In this paper, we propose a simple, language-

independent and highly effective method for

predicting the degree of compositionality of

multiword expressions (MWEs). We compare

the translations of an MWE with the trans-

lations of its components, using a range of

different languages and string similarity mea-

sures. We demonstrate the effectiveness of

the method on two types of English MWEs:

noun compounds and verb particle construc-

tions. The results show that our approach is

competitive with or superior to state-of-the-art

methods over standard datasets.

1 Compositionality of MWEs

A multiword expression (MWE) is any combina-

tion of words with lexical, syntactic or semantic

idiosyncrasy (Sag et al., 2002; Baldwin and Kim,

2009), in that the properties of the MWE are not

predictable from the component words. For exam-

ple, with ad hoc, the fact that neither ad nor hoc are

standalone English words, makes ad hoc a lexically-

idiosyncratic MWE; with shoot the breeze, on the

other hand, we have semantic idiosyncrasy, as the

meaning of “to chat” in usages such as It was good

to shoot the breeze with you1 cannot be predicted

from the meanings of the component words shoot

and breeze.

Semantic idiosyncrasy has been of particular in-

terest to NLP researchers, with research on bi-

nary compositional/non-compositional MWE clas-

1The example is taken from http://www.

thefreedictionary.com

sification (Lin, 1999; Baldwin et al., 2003), or

a three-way compositional/semi-compositional/non-

compositional distinction (Fazly and Stevenson,

2007). There has also been research to suggest that

MWEs span the entire continuum from full compo-

sitionality to full non-compositionality (McCarthy et

al., 2003; Reddy et al., 2011).

Investigating the degree of MWE compositional-

ity has been shown to have applications in informa-

tion retrieval and machine translation (Acosta et al.,

2011; Venkatapathy and Joshi, 2006). As an exam-

ple of an information retrieval system, if we were

looking for documents relating to rat race (mean-

ing “an exhausting routine that leaves no time for

relaxation”2), we would not be interested in docu-

ments on rodents. These results underline the need

for methods for broad-coverage MWE composition-

ality prediction.

In this research, we investigate the possibility of

using an MWE’s translations in multiple languages

to measure the degree of the MWE’s compositional-

ity, and investigate how literal the semantics of each

component is within the MWE. We use Panlex to

translate the MWE and its components, and compare

the translations of the MWE with the translations

of its components using string similarity measures.

The greater the string similarity, the more composi-

tional the MWE is.

Whereas past research on MWE compositionality

has tended to be tailored to a specific MWE type

(McCarthy et al., 2007; Kim and Baldwin, 2007;

Fazly et al., 2009), our method is applicable to

any MWE type in any language. Our experiments

2This definition is from WordNet 3.1.
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over two English MWE types demonstrate that our

method is competitive with state-of-the-art methods

over standard datasets.

2 Related Work

Most previous work on measuring MWE composi-

tionality makes use of lexical, syntactic or semantic

properties of the MWE. One early study on MWE

compositionality was Lin (1999), who claimed that

the distribution of non-compositional MWEs (e.g.

shoot the breeze) differs significantly from the dis-

tribution of expressions formed by substituting one

of the components with a semantically similar word

(e.g. shoot the wind). Unfortunately, the method

tends to fall down in cases of high statistical id-

iosyncrasy (or “institutionalization”): consider fry-

ing pan which is compositional but distributionally

very different to phrases produced through word-

substitution such as sauteing pan or frying plate.

Some research has investigated the syntactic

properties of MWEs, to detect their composition-

ality (Fazly et al., 2009; McCarthy et al., 2007).

The assumption behind these methods is that non-

compositional MWEs are more syntactically fixed

than compositional MWEs. For example, make a de-

cision can be passivised, but shoot the breeze cannot.

One serious problem with syntax-based methods is

their lack of generalization: each type of MWE has

its own characteristics, and these characteristics dif-

fer from one language to another. Moreover, some

MWEs (such as noun compounds) are not flexible

syntactically, no matter whether they are composi-

tional or non-compositional (Reddy et al., 2011).

Much of the recent work on MWEs focuses on

their semantic properties, measuring the semantic

similarity between the MWE and its components us-

ing different resources, such as WordNet (Kim and

Baldwin, 2007) or distributional similarity relative

to a corpus (e.g. based on Latent Semantic Analysis:

Schone and Jurafsky (2001), Bannard et al. (2003),

Reddy et al. (2011)). The size of the corpus is im-

portant in methods based on distributional similarity.

Unfortunately, however, large corpora are not avail-

able for all languages.

Reddy et al. (2011) hypothesize that the num-

ber of common co-occurrences between a given

MWE and its component words indicates the de-

gree of compositionality of that MWE. First, the co-

occurrences of a given MWE/word are considered

as the values of a vector. They then measure the

Cosine similarity between the vectors of the MWE

and its components. Bannard et al. (2003) presented

four methods to measure the compositionality of En-

glish verb particle constructions. Their best result

is based on the previously-discussed method of Lin

(1999) for measuring compositionality, but uses a

more-general distributional similarity model to iden-

tify synonyms.

Recently, a few studies have investigated using

parallel corpora to detect the degree of composi-

tionality (Melamed, 1997; Moirón and Tiedemann,

2006; de Caseli et al., 2010; Salehi et al., 2012).

The general approach is to word-align the source

and target language sentences and analyse align-

ment patterns for MWEs (e.g. if the MWE is al-

ways aligned as a single “phrase”, then it is a strong

indicator of non-compositionality). de Caseli et

al. (2010) consider non-compositional MWEs to be

those candidates that align to the same target lan-

guage unit, without decomposition into word align-

ments. Melamed (1997) suggests using mutual in-

formation to investigate how well the translation

model predicts the distribution of words in the tar-

get text given the distribution of words in the source

text. Moirón and Tiedemann (2006) show that en-

tropy is a good indicator of compositionality, be-

cause word alignment models are often confused by

non-compositional MWEs. However, this assump-

tion does not always hold, especially when deal-

ing with high-frequency non-compositional MWEs.

Salehi et al. (2012) tried to solve this problem with

high frequency MWEs by using word alignment in

both directions.3 They computed backward and for-

ward entropy to try to remedy the problem with es-

pecially high-frequency phrases. However, their as-

sumptions were not easily generalisable across lan-

guages, e.g., they assume that the relative frequency

of a specific type of MWE (light verb constructions)

in Persian is much greater than in English.

Although methods using bilingual corpora are in-

tuitively appealing, they have a number of draw-

backs. The first and the most important problem

3The IBM models (Brown et al., 1993), e.g., are not bidi-

rectional, which means that the alignments are affected by the

alignment direction.
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is data: they need large-scale parallel bilingual cor-

pora, which are available for relatively few language

pairs. Second, since they use statistical measures,

they are not suitable for measuring the composition-

ality of MWEs with low frequency. And finally,

most experiments have been carried out on English

paired with other European languages, and it is not

clear whether the results translate across to other

language pairs.

3 Resources

In this research, we use the translations of MWEs

and their components to estimate the relative de-

gree of compositionality of a MWE. There are

several resources available to translate words into

various languages such as Babelnet (Navigli and

Ponzetto, 2010),4 Wiktionary,5 Panlex (Baldwin et

al., 2010) and Google Translate.6 As we are ide-

ally after broad coverage over multiple languages

and MWEs/component words in a given language,

we exclude Babelnet and Wiktionary from our cur-

rent research. Babelnet covers only six languages

at the time of writing this paper, and in Wiktionary,

because it is constantly being updated, words and

MWEs do not have translations into the same lan-

guages. This leaves translation resources such as

Panlex and Google Translate. However, after man-

ually analysing the two resources for a range of

MWEs, we decided not to use Google Translate for

two reasons: (1) we consider the MWE out of con-

text (i.e., we are working at the type level and do not

consider the usage of the MWE in a particular sen-

tence), and Google Translate tends to generate com-

positional translations of MWEs out of context; and

(2) Google Translate provides only one translation

for each component word/MWE. This left Panlex.

Panlex is an online translation database that is

freely available. It contains lemmatized words and

MWEs in a large variety of languages, with lemma-

based (and less frequently sense-based) links be-

tween them. The database covers more than 1353

languages, and is made up of 12M lemmas and ex-

pressions. The translations are sourced from hand-

made electronic dictionaries, making it more accu-

4
http://lcl.uniroma1.it/babelnet/

5
http://www.wiktionary.org/

6
http://translate.google.com/

rate than translation dictionaries generated automat-

ically, e.g. through word alignment. Usually there

are several direct translations for a word/MWE

from one language to another, as in translations

which were extracted from electronic dictionaries. If

there is no direct translation for a word/MWE in the

database, we can translate indirectly via one or more

pivot languages (indirect translation: Soderland et

al. (2010)). For example, English ivory tower has

direct translations in only 13 languages in Panlex,

including French (tour d’ivoire) but not Esperanto.

There is, however, a translation of tour d’ivoire into

Esperanto (ebura turo), allowing us to infer an indi-

rect translation between ivory tower and ebura turo.

4 Dataset

We evaluate our method over two datasets, as de-

scribed below.

REDDY (Reddy et al., 2011): 90 English (binary)

noun compounds (NCs), where the overall NC and

each component word has been annotated for com-

positionality on a scale from 0 (non-compositional)

to 5 (compositional). In order to avoid issues

with polysemy, the annotators were presented with

each NC in a sentential context. The authors tried

to achieve a balance of compositional and non-

compositional NCs: based on a threshold of 2.5, the

dataset consists of 43 (48%) compositional NCs, 46

(51%) NCs with a compositional usage of the first

component, and 54 (60%) NCs with a compositional

usage of the second component.

BANNARD (Bannard, 2006): 160 English verb

particle constructions (VPCs) were annotated for

compositionality relative to each of the two compo-

nent words (the verb and the particle). Each annota-

tor was asked to annotate each of the verb and parti-

cle as yes, no or don’t know. Based on the ma-

jority annotation, among the 160 VPCs, 122 (76%)

are verb-compositional and 76 (48%) are particle-

compositional.

We compute the proportion of yes tags to get the

compositionality score. This dataset, unlike REDDY,

does not include annotations for the compositional-

ity of the whole VPC, and is also less balanced, con-

taining more VPCs which are verb-compositional

than verb-non-compositional.
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Figure 1: Schematic of our proposed method

5 Method

To predict the degree of compositionality of an

MWE, we require a way to measure the semantic

similarity of the MWE with its components. Our

hypothesis is that compositional MWEs are more

likely to be word-for-word translations in a given

language than non-compositional MWEs. Hence, if

we can locate the translations of the components in

the translation of the MWE, we can deduce that it

is compositional. Our second hypothesis is that the

more languages we use as the basis for determin-

ing translation similarity between the MWE and its

component words, the more accurately we will be

able to estimate compositionality. Thus, rather than

using just one translation language, we experiment

with as many languages as possible.

Figure 1 provides a schematic outline of our

method. The MWE and its components are trans-

lated using Panlex. Then, we compare the transla-

tion of the MWE with the translations of its compo-

nents. In order to locate the translation of each com-

ponent in the MWE translation, we use string simi-

English Persian Translation

kick the bucket mord

kick zad

the –

bucket satl

make a decision tasmim gereft

make sakht

a yek

decision tasmim

public service khadamaat omumi

public omumi

service khedmat

Table 1: English MWEs and their components with their

translation in Persian. Direct matches between the trans-

lation of a MWE and its components are shown in bold;

partial matches are underlined.

larity measures. The score shown in Figure 1 is de-

rived from a given language. In Section 6, we show

how to combine scores across multiple languages.

As an example of our method, consider the

English-to-Persian translation of kick the bucket as

a non-compositional MWE and make a decision as

a semi-compositional MWE (Table 1).7 By locating

the translation of decision (tasmim) in the translation

ofmake a decision (tasmim gereftan), we can deduce

that it is semi-compositional. However, we cannot

locate any of the component translations in the trans-

lation of kick the bucket. Therefore, we conclude

that it is non-compositional. Note that in this simple

example, the match is word-level, but that due to the

effects of morphophonology, the more likely situa-

tion is that the components don’t match exactly (as

we observe in the case of khadamaat and khedmat

for the public service example), which motivates our

use of string similarity measures which can capture

partial matches.

We consider the following string similarity mea-

sures to compare the translations. In each case,

we normalize the output value to the range [0, 1],
where 1 indicates identical strings and 0 indicates

completely different strings. We will indicate the

translation of the MWE in a particular language t as

MWE t, and the translation of a given component in

7Note that the Persian words are transliterated into English

for ease of understanding.
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language t as component t.

Longest common substring (LCS): The LCS

measure finds the longest common substring be-

tween two strings. For example, the LCS between

ABABC and BABCAB is BABC. We calculate a nor-

malized similarity value based on the length of the

LCS as follows:

LongestCommonString (MWE t, component t)

min(len(MWE t), len(component t))

Levenshtein (LEV1): The Levenshtein distance

calculates for the number of basic edit operations re-

quired to transpose one word into the other. Edits

consist of single-letter insertions, deletions or sub-

stitutions. We normalize LEV1 as follows:

1−
LEV1 (MWE t, component t)

max(len(MWE t), len(component t))

Levenshtein with substitution penalty (LEV2):

One well-documented feature of Levenshtein dis-

tance (Baldwin, 2009) is that substitutions are in fact

the combination of an addition and a deletion, and as

such can be considered to be two edits. Based on this

observation, we experiment with a variant of LEV1

with this penalty applied for substitutions. Similarly

to LEV1, we normalize as follows:

1−
LEV2 (MWE t, component t)

len(MWE t) + len(component t)

Smith Waterman (SW) This method is based on

the Needleman-Wunsch algorithm,8 and was devel-

oped to locally-align two protein sequences (Smith

and Waterman, 1981). It finds the optimal simi-

lar regions by maximizing the number of matches

and minimizing the number of gaps necessary to

align the two sequences. For example, the opti-

mal local sequence for the two sequences below is

AT−−ATCC, in which “-” indicates a gap:

8The Needleman-Wunsch (NW) algorithm, was designed to

align two sequences of amino-acids (Needleman and Wunsch,

1970). The algorithm looks for the sequence alignment which

maximizes the similarity. As with the LEV score, NW min-

imizes edit distance, but also takes into account character-to-

character similarity based on the relative distance between char-

acters on the keyboard. We exclude this score, because it is

highly similar to the LEV scores, and we did not obtain encour-

aging results using NW in our preliminary experiments.

Seq1: ATGCATCCCATGAC

Seq2: TCTATATCCGT

As the example shows, it looks for the longest com-

mon string but has an in-built mechanism for includ-

ing gaps in the alignment (with penalty). This char-

acteristic of SW might be helpful in our task, be-

cause there may be morphophonological variations

between the MWE and component translations (as

seen above in the public service example). We nor-

malize SW similarly to LCS:

len(alignedSequence)

min(len(MWE t), len(component t))

6 Computational Model

Given the scores calculated by the aforementioned

string similarity measures between the translations

for a given component word and the MWE, we need

some way of combining scores across component

words.9 First, we measure the compositionality of

each component within the MWE (s1 and s2):

s1 = f1(sim1(w1,MWE), ..., simi(w1,MWE ))

s2 = f1(sim1(w2,MWE), ..., simi(w2,MWE ))

where sim is a string similarity measure, simi indi-

cates that the calculation is based on translations in

language i, and f1 is a score combination function.

Then, we compute the overall compositionality of

the MWE (s3) from s1 and s2 using f2:

s3 = f2(s1, s2)

Since we often have multiple translations for a given

component word/MWE in Panlex, we exhaustively

compute the similarity between each MWE transla-

tion and component translation, and use the highest

similarity as the result of simi. If an instance does

not have a direct/indirect translation in Panlex, we

assign a default value, which is the mean of the high-

est and lowest annotation score (2.5 for REDDY and

0.5 for BANNARD). Note that word order is not an

issue in our method, as we calculate the similarity

independently for each MWE component.

In this research, we consider simple functions for

f1 such as mean, median, product, min and max. f2

9Note that in all experiments we only combine scores given

by the same string similarity measure.
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NC

Language Frequency Family

Czech 100 Slavic

Norwegian 100 Germanic

Portuguese 100 Romance

Thai 99 Kam-thai

French 95 Romance

Chinese 94 Chinese

Dutch 93 Germanic

Romanian 91 Romance

Hindi 67 Indic

Russian 43 Slavic

Table 2: The 10 best languages for REDDY using LCS.

was selected to be the same as f1 in all situations,

except when we use mean for f1. Here, following

Reddy et al. (2011), we experimented with weighted

mean:

f2(s1, s2) = αs1 + (1− α)s2

Based on 3-fold cross validation, we chose α = 0.7
for REDDY.10

Since we do not have judgements for the com-

positionality of the full VPC in BANNARD (we in-

stead have separate judgements for the verb and

particle), we cannot use f2 for this dataset. Ban-

nard et al. (2003) observed that nearly all of the

verb-compositional instances were also annotated as

particle-compositional by the annotators. In line

with this observation, we use s1 (based on the verb)

as the compositionality score for the full VPC.

7 Language Selection

Our method is based on the translation of an MWE

into many languages. In the first stage, we chose 54

languages for which relatively large corpora were

available.11 The coverage, or the number of in-

stances which have direct/indirect translations in

Panlex, varies from one language to another. In

preliminary experiments, we noticed that there is

a high correlation (about 0.50 for BANNARD and

10We considered values of α from 0 to 1, incremented by 0.1.
11In future work, we intend to look at the distribution of trans-

lations of the given MWE and its components in corpora for

many languages. The present method does not rely on the avail-

ability of large corpora.

VPC:verb

Language Frequency Family

Basque 100 Basque

Lithuanian 100 Baltic

Slovenian 100 Slavic

Hebrew 99 Semitic

Arabic 98 Semitic

Czech 95 Slavic

Slovak 92 Slavic

Latin 79 Italic

Tagalog 74 Austronesian

Polish 44 Slavic

Table 3: The 10 best languages for the verb component

of BANNARD using LCS.

VPC:particle

Language Frequency Family

French 100 Romance

Icelandic 100 Germanic

Thai 100 Kam-thai

Indonesian 92 Indonesian

Spanish 90 Romance

Tamil 87 Dravidian

Turkish 83 Turkic

Catalan 79 Romance

Occitan 76 Romance

Romanian 69 Romance

Table 4: The 10 best languages for the particle compo-

nent of BANNARD using LCS.

about 0.80 for REDDY) between the usefulness of

a language and its translation coverage on MWEs.

Therefore, we excluded languages with MWE trans-

lation coverage of less than 50%. Based on nested

10-fold cross validation in our experiments, we se-

lect the 10 most useful languages for each cross-

validation training partition, based on the Pearson

correlation between the given scores in that language

and human judgements.12 The 10 best languages

are selected based only on the training set for each

fold. (The languages selected for each fold will later

be used to predict the compositionality of the items

in the testing portion for that fold.) In Tables 2, 3

12Note that for VPCs, we calculate the compositionality of

only the verb part, because we don’t have the human judge-

ments for the whole VPC.
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f1 sim() N1 N2 NC

Mean

SW 0.541 0.396 0.637

LCS 0.525 0.431 0.649

LEV1 0.405 0.200 0.523

LEV2 0.481 0.263 0.577

Prod

SW 0.451 0.287 0.410

LCS 0.430 0.233 0.434

LEV1 0.299 0.128 0.311

LEV2 0.294 0.188 0.364

Median

SW 0.443 0.334 0.544

LCS 0.408 0.365 0.553

LEV1 0.315 0.054 0.376

LEV2 0.404 0.134 0.523

Min

SW 0.420 0.176 0.312

LCS 0.347 0.225 0.307

LEV1 0.362 0.310 0.248

LEV2 0.386 0.345 0.338

Max

SW 0.371 0.408 0.345

LCS 0.406 0.430 0.335

LEV1 0.279 0.362 0.403

LEV2 0.380 0.349 0.406

Table 5: Correlation on REDDY (NCs). N1, N2 and NC,

are the first component of the noun compound, its second

component, and the noun compound itself, respectively.

and 4, we show how often each language was se-

lected in the top-10 languages over the combined

100 (10×10) folds of nested 10-fold cross valida-

tion, based on LCS.13 The tables show that the se-

lected languages were mostly consistent over the

folds. The languages are a mixture of Romance,

Germanic and languages from other families (based

on Voegelin and Voegelin (1977)), with no standout

language which performs well in all cases (indeed,

no language occurs in all three tables). Additionally,

there is nothing in common between the verb and the

particle top-10 languages.

8 Results

As mentioned before, we perform nested 10-fold

cross-validation to select the 10 best languages on

the training data for each fold. The selected lan-

guages for a given fold are then used to compute s1

13Since our later results show that LCS and SW have higher

results, we only show the best languages using LCS. These

largely coincide with those for SW.

f1 sim() Verb Particle

Mean

SW 0.369 0.510

LCS 0.406 0.509

LEV1 0.335 0.454

LEV2 0.340 0.460

Prod

SW 0.315 0.316

LCS 0.339 0.299

LEV1 0.322 0.280

LEV2 0.342 0.284

Median

SW 0.316 0.409

LCS 0.352 0.423

LEV1 0.295 0.387

LEV2 0.309 0.368

Min

SW 0.262 0.210

LCS 0.329 0.251

LEV1 0.307 0.278

LEV2 0.310 0.281

Max

SW 0.141 0.288

LCS 0.268 0.299

LEV1 0.145 0.450

LEV2 0.170 0.398

Table 6: Correlation on BANNARD (VPC), based on the

best-10 languages for the verb and particle individually

and s2 (and s3 for NCs) for each instance in the test

set for that fold. The scores are compared with hu-

man judgements using Pearson’s correlation. The

results are shown in Tables 5 and 6. Among the five

functions we experimented with for f1, Mean per-

forms much more consistently than the others. Me-

dian is less prone to noise, and therefore performs

better than Prod, Max and Min, but it is still worse

than Mean.

For the most part, LCS and SW perform better

than the other measures. There is little to separate

these two methods, partly because they both look for

a sequence of similar characters, unlike LEV1 and

LEV2 which do not consider contiguity of match.

The results support our hypothesis that using mul-

tiple target languages rather than one, results in a

more accurate prediction of MWE compositionality.

Our best result using the 10 selected languages on

REDDY is 0.649, as compared to the best single-

language correlation of 0.497 for Portuguese. On

BANNARD, the best LCS result for the verb com-

ponent is 0.406, as compared to the best single-
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language correlation of 0.350 for Lithuanian.

Reddy et al. (2011) reported a correlation of 0.714

on REDDY. Our best correlation is 0.649. Note that

Reddy et al. (2011) base their method on identifi-

cation of MWEs in a corpus, thus requiring MWE-

specific identification. Given that this has been

shown to be difficult for MWE types including En-

glish VPCs (McCarthy et al., 2003; Baldwin, 2005),

the fact that our method is as competitive as this is

highly encouraging, especially when you consider

that it can equally be applied to different types of

MWEs in other languages. Moreover, the computa-

tional processing required by methods based on dis-

tributional similarity is greater than our method, as

it does not require processing a large corpus.

Finally, we experimented with combining our

method (STRINGSIMMEAN) with a reimplementation

of the method of Reddy et al. (2011), based on sim-

ple averaging, as detailed in Table 7. The results are

higher than both component methods and the state-

of-the-art for REDDY, demonstrating the comple-

mentarity between our proposed method and meth-

ods based on distributional similarity.

In Table 8, we compare our results

(STRINGSIMMEAN) with those of Bannard et

al. (2003), who interpreted the dataset as a binary

classification task. The dataset used in their study

is a subset of BANNARD, containing 40 VPCs, of

which 29 (72%) were verb compositional and 23

(57%) were particle compositional. By applying a

threshold of 0.5 over the output of our regression

model, we binarize the VPCs into the compositional

and non-compositional classes. According to the

results shown in Table 6, LCS is a better similarity

measure for this task. Our proposed method has

higher results than the best results of Bannard et

al. (2003), in part due to their reliance on VPC

identification, and the low recall on the task, as

reported in the paper. Our proposed method does

not rely on a corpus or MWE identification.

9 Error Analysis

We analyse items in REDDY which have a high dif-

ference (more than 2.5) between the human anno-

tation and our scores (using LCS and Mean). The

words are cutting edge, melting pot, gold mine and

ivory tower, which are non-compositional accord-

ing to REDDY. After investigating their translations,

we came to the conclusion that the first three MWEs

have word-for-word translations in most languages.

Hence, they disagree with our hypothesis that word-

for-word translation is a strong indicator of compo-

sitionality. The word-for-word translations might be

because of the fact that they have both compositional

and non-compositional senses, or because they are

calques (loan translations). However, we have tried

to avoid such problems with calques by using trans-

lations into several languages.

For ivory tower (“a state of mind that is discussed

as if it were a place”)14 we noticed that we have a di-

rect translation into 13 languages. Other languages

have indirect translations. By checking the direct

translations, we noticed that, in French, the MWE is

translated to tour and tour d’ivoire. A noisy (wrong)

translation of tour “tower” resulted in wrong indirect

translations for ivory tower and an inflated estimate

of compositionality.

10 Conclusion and Future Work

In this study, we proposed a method to predict MWE

compositionality based on the translation of the

MWE and its component words into multiple lan-

guages. We used string similarity measures between

the translations of the MWE and each of its compo-

nents to predict the relative degree of composition-

ality. Among the four similarity measures that we

experimented with, LCS and SW were found to be

superior to edit distance-based methods. Our best re-

sults were found to be competitive with state-of-the-

art results using vector-based approaches, and were

also shown to complement state-of-the-art methods.

In future work, we are interested in investigating

whether alternative ways of combining our proposed

method with vector-based models can lead to fur-

ther enhancements in results. These models could

be especially effective when comparing translations

which are roughly synonymous but not string-wise

similar.
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sim() STRINGSIMMEAN STRINGSIMMEAN + Reddy et al.

SW 0.637 0.735

LCS 0.649 0.742

LEV1 0.523 0.724

LEV2 0.577 0.726

Table 7: Correlation after combining Reddy et al.’s method and our method with Mean for f1 (STRINGSIMMEAN ). The

correlation using Reddy et al.’s method is 0.714.

Method Precision Recall F-score (β = 1) Accuracy

Bannard et al. (2003) 0.608 0.666 0.636 0.600

STRINGSIMMEAN 0.862 0.718 0.774 0.693

Table 8: Results for the classification task. STRINGSIMMEAN is our method using Mean for f1
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